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a b s t r a c t

We present two graph-based algorithms for multiclass segmentation of high-dimensional
data,motivated by the binary diffuse interfacemodel. One algorithmgeneralizesGinzburg–
Landau (GL) functional minimization on graphs to the Gibbs simplex. The other algorithm
uses a reduction of GLminimization, based on theMerriman–Bence–Osher scheme formo-
tion by mean curvature. These yield accurate and efficient algorithms for semi-supervised
learning. Our algorithms outperform existing methods, including supervised learning ap-
proaches, on the benchmark datasets that we used. We refer to Garcia-Cardona (2014) for
a more detailed illustration of the methods, as well as different experimental examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multiclass segmentation is a well studied problem in machine learning and computer vision. An energy formulated for
the problem is often made up of a regularization term and a fidelity term. Recently, graph-based regularization terms have
beenused to take into account the similarities in the dataset.Wepresent two graph-based segmentation procedures inspired
by [1], which describes a binary segmentation method consisting of minimizing the Ginzburg–Landau functional on graphs
using gradient descent. The first method extends this procedure to a multiclass case using the idea of the Gibbs simplex.
The second method applies the simplex idea to the graph-based Merriman–Bence–Osher (MBO) scheme developed in [2].
Both algorithms result in efficient and accurate ways to perform multiclass segmentation. A more detailed explanation of
the methods, intended for a computer science audience, is contained in [3], while here we follow an applied mathematics
approach. We also present different results using other benchmark datasets than the ones in [3].

1.1. Ginzburg–Landau functional and diffuse interface model

The Ginzburg–Landau (GL) functional, originally proposed to describe physical phenomena, is formulated as:

GL(u) =
ϵ

2


|∇u|2dx +

1
ϵ


Φ(u)dx, (1)

∗ Corresponding author. Tel.: +1 3104902193.
E-mail addresses: kmerkurjev@gmail.com, kmerkurev@math.ucla.edu (E. Merkurjev), cristina.cgarcia@gmail.com (C. Garcia-Cardona),

bertozzi@math.ucla.edu (A.L. Bertozzi), allon.percus@cgu.edu (A.G. Percus).

http://dx.doi.org/10.1016/j.aml.2014.02.008
0893-9659/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.aml.2014.02.008
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2014.02.008&domain=pdf
mailto:kmerkurjev@gmail.com
mailto:kmerkurev@math.ucla.edu
mailto:cristina.cgarcia@gmail.com
mailto:bertozzi@math.ucla.edu
mailto:allon.percus@cgu.edu
http://dx.doi.org/10.1016/j.aml.2014.02.008


30 E. Merkurjev et al. / Applied Mathematics Letters 33 (2014) 29–34

where u denotes the state of the phases, ∇ represents the spatial gradient operator, Φ(u) is a double-well potential, such as
1
4 (u

2
− 1)2, and ϵ is a positive constant.

Kohn et al. show in [4] that the ϵ → 0 limit of (1), in the sense of Γ -convergence, is the total variation semi-norm:

GL(u) →Γ ∥u∥TV . (2)

One might prefer to use the GL functional in data segmentation because its L2 gradient flow results in a linear differential
operator. By contrast, the TV semi-norm contains a nonlinear curvature term.

The diffuse interface description has been used successfully in image inpainting [5,6] and image segmentation [7]. The
standard practice is to introduce an additional fidelity term F to allow for the specification of any known information û:

E(u) = GL(u) + F(u, û). (3)

One way to minimize the energy is using gradient descent, producing the modified Allen–Cahn equation:

∂u
∂t

= −
δGL
δu

− µ
δF
δu

= ϵ∆u −
1
ϵ
Φ ′(u) − µ

δF
δu

. (4)

1.1.1. Graph framework for large datasets
In [1], Bertozzi and Flenner outline an approach for binary segmentation using the Ginzburg–Landau functional in a graph

domain instead of the continuous domain of the original functional.
We consider a graph setting where G = (V , E) is an undirected graph with vertices V and edges E. For each dataset, the

vertices represent its building blocks; for example, in the case of an image, the vertices would consist of pixels. Each edge
contains a valuew(i, j) assigned to it, measuring the similarity between the two vertices i and j it is connecting. In this work,
we use the Gaussian function w(i, j) = exp(−d(i, j)2/σ 2) as a similarity measure. Here d(i, j) represents some measure of
‘‘distance’’ between vertices i and j.

If one defines W as the matrix Wij = w(i, j), the degree of a vertex i ∈ V as di =


j∈V w(i, j), and D to be the diagonal
matrix with elements di, then the graph Laplacian is formulated as L = D − W .

1.1.2. Ginzburg–Landau functional on graphs
Weuse the theory of nonlocal calculus, described in [8], to generalize the continuousGL formulation to a graphical setting.

The theory relates the spacial Laplace operator to the graph Laplacianmatrix of the previous section. In fact, the eigenvectors
of the discrete Laplacian converge to those of the Laplacian [1]. However, in the limit of large sample size, the matrix Lmust
be scaled correctly to guarantee stability of convergence to the continuum differential operator [1]. A scaling we use is the
normalized Laplacian

Ls = D−
1
2 LD−

1
2 = I − D−

1
2 WD−

1
2 (5)

because the matrix is symmetric, which makes the linear algebra routines we use more efficient.
The GL functional on graphs is formulated as

GL(u) =
ϵ

2
⟨u, Lsu⟩ +

1
4ϵ


i∈V


u2
i − 1

2
, (6)

where ui, the ith component of vector u, is the state of node i. Here, the gradient term in the original functional (1) is replaced
by a more general operator on graphs. The second term is a double-well potential function having minima at ±1. This
representation is appropriate for binary classifications only.

Note that one benefit of using a graphical framework is having a way to deal with the case of nonlinearly separable
classes. In addition, using graphs provides a straightforward way of processing high dimensional data.

1.1.3. Semi-supervised learning (SSL) on graphs
In semi-supervised learning (SSL), one uses the knowledge of the labels of a fraction of the nodes. As in (3), an additional

fidelity term is introduced to specify the information:

E(u) =
ϵ

2
⟨u, Lsu⟩ +

1
4ϵ


i∈V


u2
i − 1

2
+


i∈V

µi

2


ui − ûi

2
, (7)

where ui, the ith component of vector u, is the (real-valued) state of node i, µi is a parameter that is equal to a positive
constant µ if i is a fidelity node and to zero otherwise, and ûi is the known value of fidelity node i.

Thus, given an initial state ui of each vertex i, the goal is to minimize the GL functional with fidelity term. The classes are
obtained by thresholding ui. We extend this efficient binary data segmentation method to multiclass segmentation in the
following sections.
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2. Multiclass Ginzburg–Landau approach

2.1. Extension to multiclass segmentation

Let ND be the dimension of the dataset and K the number of classes. To extend to the multiclass case, we now assign to
node i a composition of states ui ∈ RK , where the kth component of ui is the strength that the node belongs to class k. Note
that in the binary case, each node was assigned a single real value denoting in some way the class membership. Also, note
that u is now a ND × K matrix.

We require the vector ui to be an element of the Gibbs simplex ΣK , represented as:

ΣK
:=


(x1, . . . , xK ) ∈ [0, 1]K

 K
k=1

xk = 1


. (8)

Vertices of the simplex are elements inwhich all components vanish, except onewhich is equal to 1. These elements rep-
resent points that belong exclusively to a certain class. Note that the simplex formulation has a straightforward probabilistic
interpretation, since each row of u is the probability distribution over the K classes.

The multiclass GL energy functional on graphs is expressed as:

E(u) =
ϵ

2
⟨u, Lsu⟩ +

1
2ϵ


i∈V


K

k=1

1
4

∥ui − ek∥2
L1


+


i∈V

µi

2

ui − ûi
2 ,

where ûi is a vector indicating prior class knowledge of node i, and ⟨u, Lsu⟩ = trace (uTLsu).
The advantage of the simplex representation is that, unlike the case with somemulticlass methods, the penalty assigned

to neighbors that are differently labeled is independent of the labels. Note that in the second term of the energy, we use an
L1 norm as it prevents an undesirable minimum from occurring at the center of the simplex, as would be the case with an
L2 norm for large K . This potential aims to provide a clear way to calculate class memberships, as the phase composition is
purer near the vertices of the simplex. The third (fidelity) term allows the user to input any a priori information.

2.2. Energy minimization

Similar to the procedure in [1], we use a convex splitting scheme for the minimization of the energy:

E(u) = Econvex(u) + Econcave(u)

Econvex(u) =
ϵ

2
⟨u, Lsu⟩ +

C
2

⟨u,u⟩

Econcave(u) =
1
2ϵ


i∈V

K
k=1

1
4

∥ui − ek∥2
L1 +


i∈V

µi

2

ui − ûi
2
L2

−
C
2

⟨u,u⟩.

Here C ∈ R is a constant big enough so the concavity/convexity of the above terms is valid. Under the right conditions, this
approach results in an unconditionally stable scheme for gradient descent [7,9,10] of the form

un+1
+ dt

δEconvex
δu

(un+1) = un
− dt

δEconcave
δu

(un). (9)

We use an implicit scheme because of the stiffness of the differential equations. Otherwise, dt might be forced to be
extremely small for any meaningful solution. We solve the scheme very efficiently using spectral methods for which only a
small number of eigenfunctions are needed to obtain a good result. Note that after the update, the solution might no longer
be an element of the Gibbs simplex, so we use the procedure in [11] to project the phase field back to the simplex. For ini-
tialization, we use a random point on the simplex for a non-fidelity node, and the corresponding vertex on the simplex for
a fidelity node.

The stopping criterion we use for energy minimization is

max
i

∥un+1
i − un

i ∥
2

max
i

∥un+1
i ∥2

< η. (10)

Finally, we assign node i to class k if ui is closest to vertex ek on the simplex.
Note that other operator splitting methods have been studied for minimization problems (e.g. [12]). Ours however has

the advantages: (i) it is direct and thus does not require one to solve further minimization problems, (ii) one can adjust the
accuracy by changing the number of eigenfunctions, and (iii) its complexity is close to linear in |V |. Details about (iii) can be
found in [3].
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3. MBO reduction of the Ginzburg–Landau energy functional

In [13], Merriman, Bence and Osher describe a simple algorithm to approximate motion by mean curvature, or motion
in which normal velocity equals mean curvature. Their algorithm consists of alternating between the following steps:

1. Diffusion. Let un+ 1
2 = S(δt)un where S(δt) is the propagator (by time δt) of the standard heat equation: ∂u

∂t = ∆u.
2. Thresholding. Let

un+1
=


1 if un+ 1

2 ≥ 0,
−1 if un+ 1

2 < 0.

Our interest in this algorithm comes from its relation to the basic (unmodified) Allen–Cahn equation:

∂u
∂t

= ϵ∆u −
1
ϵ
Φ ′(u). (11)

One can use a simple time-splitting scheme, in which one first propagates using the first term of the right side of (11) and
then the second one, to evolve the Allen–Cahn equation. Note, however, that in the ϵ → 0 limit, the second step is simply
thresholding [13]. Thus, as ϵ → 0, this time splitting scheme amounts to alternating between diffusion and thresholding
steps, exactly the MBO scheme. Moreover, [14] shows that, as ϵ → 0, the rescaled solutions uϵ(z, t/ϵ) of (11) yield motion
by mean curvature of the interface between the two phases of the solutions.

Barles [15] and Evans [16] have proven rigorously that the MBO scheme approximates motion by mean curvature.

3.1. Graph formulation

Themotion bymean curvature of theMBO schemewas generalized to graphs byMerkurjev et al. in [2], where amodified
MBO scheme on graphs has been used to formulate an algorithm for binary classification and image processing. The authors
apply a two-step time splitting scheme to (4) so that the second step is the same as the one in the original MBO scheme, and
then replace the ∆u termwith a more general graph term−Lsu. The result is a scheme that alternates between propagation
using the modified Allen–Cahn Eq. (4) on graphs and thresholding.

3.2. Extension to multiclass segmentation

The standard Gibbs-simplex ΣK defined in Eq. (8) allows the multiclass extension of the algorithm in [2] to be straight-
forward. Step 2 of the method above is modified so that the thresholding now takes the form of a displacement towards the
vertex in the Gibbs simplex closest to the projection of the result of the diffusion step using the model in [11]. In summary,
using the same notation as in Section 2, the new algorithm consists of alternating between:

1. Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsun+ 1

2 − µ(un
− û). (12)

2. Thresholding:

un+1
i = ek, (13)

where vertex ek is the vertex in the simplex closest to the projection of u
n+ 1

2
i using [11].

The scheme is solved using spectral methods. The initialization procedure and the stopping criterion are the same as in
Section 2. In practice, the diffusion step can be repeated several times, denoted by NS , before the thresholding step. Finally,
node i is assigned to class k if the kth component of ui is one.

In practice, the complexity of this algorithm is close to linear as well [3].

4. Numerical results

4.1. Previous results for MNIST, WebKB, COIL and three moons datasets

We first summarize the results in [3], which contains a more detailed description of our algorithms. The main datasets
used in the paper were the WebKB [17], MNIST [18] and COIL [19] benchmark datasets. For WebKB, multiclass MBO and
GL achieved an accuracy of 88.48% and 87.2%, respectively. This was compared with supervised learning methods reported
in [20], such as centroid-normalized sum (82.66%), naive Bayes (83.52%) and SVM (linear kernel) (85.82%). For these meth-
ods, two thirds of the data was used for training, and one third for testing. Our methods obtain higher accuracy using only
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(a) Swiss roll dataset. (b) Spectral clustering result (49%). (c) Our method’s result (94.5%).

Fig. 1. Swiss roll dataset results.

20%−25% fidelity. For the MNIST dataset, the accuracy of the two methods was 96.91% and 96.8%, respectively, which was
comparable to the results obtained by neutral/convolutional nets, boosted stumps and nonlinear classifiers, and higher than
that of methods such as transductive classification and Cheeger cuts. For the COIL dataset, multiclass MBO and GL were able
to achieve higher accuracy (91.46% and 91.2%, respectively) when compared to some of the bestmethods, likeMP, SQ-Loss-I
and sGT, mentioned in [21]. The paper also presents a co-segmentation example using an image, as well as results for the
synthetic ‘‘three moons’’ dataset. For the latter, the results were 99.12% and 98.1% for multiclass MBO and GL methods,
respectively.

4.2. Swiss roll

The Swiss roll dataset, pictured in Fig. 1a, contains 1600 3D points arranged in spirals. To calculate the weight matrix, we
used the weight function in [22] with 10 nearest neighbors. To calculate the eigenvectors, we used the procedure in [23].
The parameters used were: 50 eigenvectors, C = 51, ϵ = 1, dt = 0.1, µ = 50 and η = 10−7 with 80 fidelity points (5%).

Averaged over 100 runs, the average accuracies obtained were 94.1% and 91.8% for the multiclass GL and MBOmethods,
respectively. The visual result of the latter method is included in Fig. 1c. We compare this result to the one obtained using
spectral clustering (Fig. 1b): average accuracywas only 49.75% over 100 runs,with the graph being the same as formulticlass
GL and MBO cases. Calculations were done with 4 eigenvectors.

4.3. Landsat satellite dataset

This database contains multi-spectral values of pixels in neighborhoods in a satellite image. To calculate the weight
matrix, we used theweight function in [22] with 30 nearest neighbors. To calculate the eigenvectors, we used the procedure
in [23]. The parameters used were: 200 eigenvectors, C = 51, ϵ = 1, dt = 0.1, µ = 50 and η = 10−7 with 350 fidelity
points (5.44%).

Averaged over 30 runs, the average accuracies obtainedwere 87.05% and 87.25% for themulticlass GL andMBOmethods,
respectively. We compare these results to several supervised learning methods listed in [24]. These algorithms were
performed using 80% training and 20% validation. The results were: 65.15% using SC-SVM, 75.43% using SH-SVM, 65.88%
using S-LS, 86.65% using simplex boosting, and 90.15% using S-LS rbf. We outperform all but the last algorithm using only
5% fidelity, while these algorithms use 80% for training.

4.4. Human activity dataset

This dataset from the UCI Machine Learning Repository contains information about experiments carried out with 30
volunteers. Each person performed one of six actions: walking, walking upstairs, walking downstairs, sitting, standing and
laying while wearing a smartphone on the waist. The smartphone recorded their linear acceleration and 3-axial angular
velocity. The goal is to segment the people into six classes according to activity using the information obtained from the
phone.Weused theweight function in [22]with 59 nearest neighbors. The parameters usedwere: 50 eigenvectors, C = 160,
dt = 0.31, µ = 159 and η = 10−7 with 5% of points being fidelity points.

The average accuracy was 89.7% for the multiclass MBOmethod, while being 88.7% for the GL method. We compare this
to the results of [25], where the methods MC-SVM and MC-HF-SVM have accuracies of 89.3% and 89.0%, respectively. It is
important to note that the results of the paper were obtained using supervised learning methods where 70% of the data was
used for training and the rest for testing. We obtain higher accuracy (with multiclass MBO) using only 5% fidelity.
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