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Abstract—We propose a method for recognizing moving vehi-
cles, using data from roadside audio sensors. This problem has
applications ranging widely, from traffic analysis to surveillance.
We extract a frequency signature from the audio signal using
a short-time Fourier transform, and treat each time window as
an individual data point to be classified. By applying a spectral
embedding, we decrease the dimensionality of the data sufficiently
for K-nearest neighbors to provide accurate vehicle identification.

I. INTRODUCTION

Classification and identification of moving vehicles from
audio signals is of interest in many applications, ranging from
traffic flow management to military target recognition. Clas-
sification may involve differentiating vehicles by type, such
as jeep, sedan, etc. Identification can involve distinguishing
specific vehicles, even within a given vehicle type.

Since audio data is small compared to, say, video data,
multiple audio sensors can be placed easily and inexpensively.
However, there are certain obstacles having to do with both
hardware and physics. Certain microphones and recording de-
vices have built-in features, for example, damping/normalizing
that may be applied when the recording exceeds a threshold.
Microphone sensitivity is another equipment problem: the
slightest wind could give disruptive readings that affect the
analysis. Ambient noise is a further issue, adding perturbations
to the signal. Physical challenges include the Doppler shift,
where the sound of a vehicle approaching differs from the
sound of it leaving, so trying to relate these two can prove
difficult.

The short-time Fourier transform (STFT) is often used for
feature extraction in audio signals. We adopt this approach,
choosing time windows large enough that they carry sufficient
frequency information but small enough that they allow us to
localize vehicle events. Afterwards, we use spectral embedding
as a dimension reduction technique, reducing from thousands
of Fourier coefficients to a small number of graph Laplacian
eigenvectors. We then cluster the low-dimensional data using
K-means, establishing an unsupervised spectral clustering
baseline prediction. Finally, we improve upon this by using
K-nearest neighbors as a simple but highly effective form
of semi-supervised learning, giving an accurate classification

without the need for large quantities of training data required
by frequently used supervised approaches such as deep learn-
ing.

In this paper, we apply these methods to audio recordings
of passing vehicles. In Section 2, we provide background on
vehicle classification using audio signals. In Section 3, we
discuss the characteristics of the vehicle data that we use.
Section 4 describes our feature extraction methods. Section
5 discusses our classification methods. Section 6 presents our
results. We conclude in section 7 with a discussion of our
method’s strengths and limitations, as well as future directions.

II. BACKGROUND

The vast majority of the literature in audio classification is
devoted to speech and music processing, with relatively few
papers on problems of vehicle identification and classification.
The most closely related work has included using principle
component analysis for classifying car vs. motorcycle [1],
using an ε-neighborhood to cluster Fourier coefficients to clas-
sify different vehicles [2], and using both the power spectral
density and wavelet transform with K-nearest neighbors and
support vector machines to classify vehicles [3]. Our study
takes a graph-based clustering approach to identifying different
individual vehicles from their Fourier coefficients.

Analyzing audio data generally involves the following steps:

1) Preprocess raw data.
2) Extract features in data.
3) Process extracted data.
4) Analyze processed data.

The most common form of preprocessing on raw data is en-
suring that it has zero mean, by subtracting any bias introduced
in the sound recording [2], [3]. Another form of preprocessing
is applying a weighted window filter to the raw data. For
example, the Hamming window filter is often used to reduce
the effects of jump discontinuity when applying the short-
time Fourier transform, known as the Gibbs’ effect [1]. The
final preprocessing step deals with the manipulation of data
size, namely how to group audio frames into larger windows.
Different window sizes have been used in the literature, with
no clear set standard. Additionally, having some degree of



overlap between successive windows can help smooth results
[1]. The basis for these preprocessing steps is to set up the
data to allow for better feature extraction.

STFT is frequently used for feature extraction [1], [2], [3],
[4]. Other approaches include the wavelet transform [3], [5]
and the one-third-octave filter bands [6]. All of these methods
aim at extracting underlying information contained within the
audio data.

After extracting pertinent features, additional processing is
needed. When working with STFT, the amplitudes for the
Fourier coefficients are generally normalized before analysis is
performed [1], [2], [3], [4]. Another processing step applied to
the extracted features is dimension reduction [7]. The Fourier
transform results in a large number of coefficients, giving a
high-dimensional description of the data. We use a spectral
embedding to reduce the dimensionality of the data [8]. The
spectral embedding requires the use of a distance function on
the data points: by adopting the cosine distance, we avoid the
need for explicit normalization of the Fourier coefficients.

Finally, the analysis of the processed data involves the
classification algorithm. Methods used for this have included
the following:

• K-means and K-nearest neighbors [3]
• Support vector machines [3]
• Within ε distance [2]
• Neural networks [6]

K-means and K-nearest neighbors are standard techniques
for analyzing the graph Laplacian eigenvectors resulting from
spectral clustering [8]. They are among the simplest methods,
but are also well suited to clustering points in the low-
dimensional space obtained through the dimensionality reduc-
tion step.

III. DATA

Our dataset consists of recordings, provided by the US
Navy’s Naval Air Systems Command [9], of different vehicles
moving multiple times through a parking lot at approximately
15mph. While the original dataset consists of MP4 videos
taken from a roadside camera, we extract the dual channel
audio signal, and average the channels together into a single
channel. The audio signal has a sampling rate of 48,000 frames
per second. Video information is used to ascertain the ground
truth (vehicle identification) for training data.

The raw audio signal already has zero mean. Therefore, the
only necessary preprocessing is grouping audio frames into
time windows for STFT. We found that with windows of 1/8
of a second, or 6000 frames, there is both a sufficient number
of windows and sufficient information per window. This is
comparable to window sizes used in other studies [1].

We use two different types of datasets for our analysis. The
first is a single audio sequence of a vehicle passing near the
microphone, used as a test case for classifying the different
types of sounds involved, differentiating background audio

Fig. 1. Raw audio signal for single-vehicle data sequence.

Fig. 2. Raw audio signal for composite data. Images show the three different
vehicles, as seen in accompanying video (not used for classification).

from vehicle audio. This sequence, whose raw audio signal
is shown in Figure 1, involves the vehicle approaching from a
distance, becoming audible after 5 or 6 seconds, passing the
microphone after 10 seconds, and then leaving. The second
sequence, shown in Figure 2, is a compilation formed from
multiple passages of three different vehicles (a white truck,
black truck, and jeep). We crop the two seconds where the
vehicle is closest to the camera, having the highest amplitude,
and then combine these to form a composite signal. The goal
here is test the clustering algorithm’s ability to differentiate
the vehicles.

IV. FEATURE EXTRACTION

A. Fourier coefficients

In order to extract relevant features from our raw audio
signals, we use the short-time Fourier transform.

With time windows of 1/8 of a second, or 6000 frames,
the Fourier decomposition contains 6000 coefficients. These
are symmetric, leaving 3000 usable coefficients. Figure 3
shows the first 1000 Fourier coefficients for a time window
representing background noises. Note that much of the signal
is concentrated within the first 200 coefficients.

Fig. 3. First 1000 Fourier coefficients of a background audio frame



B. Fourier reconstructions

Given the concentration of frequencies, we hypothesize that
we can isolate specific sounds by selecting certain ranges of
frequency. To test this, we perform a reconstruction analysis
of the Fourier coefficients. After performing the Fourier trans-
form, we zero out a certain range of Fourier coefficients and
then perform the inverse Fourier transform. This has the effect
of filtering out the corresponding range of frequencies.

Figure 4 shows the results of the reconstruction on an
audio recording exhibiting strong wind sounds for the first
12 seconds, before the arrival of the vehicle at second 14.
In a) the raw signal is shown. In b) we keep only the first
130 coefficients, in c) we keep only the next 130 coefficients,
and in d) we keep all the rest of the coefficients. We see
in the reconstruction that the first 130 Fourier coefficients
contain most of the background sounds, including the strong
wind that corresponds to the large raw signal amplitudes
in the first 12 seconds. The remaining Fourier coefficients
are largely insignificant during this time. When the vehicle
becomes audible, however, the second 130 and the rest of the
coefficients exhibit a significant increase in amplitude.

By listening to the audio of the reconstructions b) through
d), one can confirm that the first 130 coefficients primarily
represent the background noise, while the second 130 and the
rest of the audio capture most of the sounds of the moving
vehicle. This suggests that further analysis into the detection
of background frame signatures could yield a better method
for finding which frequencies to filter out, in order to yield
better reconstructed audio sequences.

a) Raw signal data.

b) Reconstruction using first 130 Fourier coefficients.

c) Reconstruction using second 130 Fourier coefficients.

d) Reconstruction using remaining Fourier coefficients.
Fig. 4. Decomposition of an additional (single-vehicle) data sequence into
three frequency bands.

Fig. 5. Comparing car and truck Fourier coefficients, after applying a moving
mean of size 5.

C. Vehicle comparisons

The goal of feature extraction is to detect distinguishing
characteristics in the data. As a further example of why Fourier
coefficients form a suitable set of features for vehicle identifi-
cation, Figure 5 shows Fourier coefficients for a sedan and for
a truck, in both cases for time windows where the vehicle is
close to the microphone. A moving mean of size 5 is used to
smooth the plots, and coefficients are normalized to sum to 1 in
this figure, to enable a comparison that is affected by different
microphone volumes. There is a clear distinction between the
two frequency signatures, particularly at lower frequencies.
Therefore, in order to distinguish between different vehicles,
we focus on effective ways of clustering these signatures.

V. SPECTRAL EMBEDDING

To differentiate background sounds from vehicle sounds,
and to identify individual vehicles, we apply a spectral em-
bedding and then use both K-means and K-nearest neighbors
as the final classification step. We treat each time window as
an independent data point to be classified: for window i, let
xi ∈ Rm represent the set of m Fourier coefficients associated
with that window.

A spectral embedding requires a distance function for
comparing the different data points. Given that we use a
large number of Fourier coefficients (dimensionality m), many
of which may be relatively insignificant, we use the cosine
distance so as to decrease our sensitivity to these small
coefficient values. The distance is given by

dij = 1− xi · xj

‖xi‖ ‖xj‖

The goal of a spectral embedding is to reduce the dimen-
sionality of the data coming from our feature extraction step.
The method, described in Algorithm 1, involves associating
data points with vertices on a graph, and similarities (Gaussian
function of distance) with edge weights. By considering only
the leading eigenvectors of the graph Laplacian, we obtain a
description of the data points in a low-dimensional Euclidean
space, where they may be more easily clustered. This approach
allows for greater control than other dimensionality reduction
methods for vehicle audio recognition, such as PCA [1]. Note
that our algorithm uses an adaptive expression for the Gaussian
similarities, with the variance set according the distance to a
point’s N th neighbor, where N is a specified parameter. We
also set all similarities beyond the N th neighbor to be zero,
to generate a sparser and more easily clustered graph.



Algorithm 1 Spectral embedding pseudo code
1: INPUT n data points (STFT coefficients x1, . . . ,xn)
2: Form distance matrix containing cosine distances between

data points, dij : i, j = 1, . . . , n
3: Compute the Gaussian similarity from each distance,
Sij = e−d

2
ij/σ

2
i , where σi is the N th largest similarity

for point i
4: Keep only the N largest similarities Sij for every value

of i, setting all others to zero
5: Form the diagonal matrix, Dii =

∑
j Sij

6: Symmetric normalized graph Laplacian (SNGL) is defined
as Ls = I−D−1/2SD−1/2

7: OUTPUT Eigenpairs of the SNGL: eigenvectors V and
eigenvalues λ

VI. RESULTS

We used the following parameters and settings:

• 6000 frames per time window, resulting in 6000 possible
Fourier coefficients. We use only the first m = 1500
coefficients for spectral clustering, since these coefficients
represent 98% of our data.

• Standard box windows, with no overlap. We found no
conclusive benefit when introducing weighted window
filters or overlapping time windows.

• N = 15 for spectral embedding: each node in the graph
has 15 neighbors, and the distance to the 15th neighbor is
used to establish the variance in the Gaussian similarity.

A. Eigenvectors

Figure 6 shows the eigenvalues of the Laplacian resulting
from the spectral embedding of the composite (multiple-
vehicle) dataset. This spectrum shows gaps after the third
eigenvalue and the fifth eigenvalue, suggesting that a sufficient
number of eigenvectors to use may be either three or five [8].
In practice, we find that five eigenvectors give good K-means
and K-nearest neighbor clustering results.

Fig. 6. Spectrum of SNGL for composite dataset, with N = 15. Note gaps
after third and fifth eigenvalue.

B. Spectral clustering

The spectral clustering method applies K-means to the lead-
ing eigenvectors of the Laplacian. Figure 7 shows results for
the single-vehicle data, for K = 2, 3, 4. We show “best” results
over 1000 randomized initializations: we select the clustering
result with the smallest sum of squared distances between

data points and associated cluster centers. K = 3 gives a
relatively clear separation of the signal into background noise,
approaching vehicle, and departing vehicle (the latter two
sounds differentiated by Doppler shift). K = 2 and K = 4 are
less satisfactory, either clustering the vehicle approach together
with background or subdividing the background cluster.

Figure 8 shows the results of K-means on the composite
data. Given that there are 3 distinct vehicles, K = 3 is
chosen in an attempt to classify these, and is also consistent
with the largest eigengap in Figure 6 falling after the third
eigenvalue. While K-means accurately clusters the majority
of the data, many individual data points are misclassified. To
improve these results, we instead turn to a semi-supervised
classification method.

Fig. 7. K-means on eigenvectors from spectral clustering of single-vehicle
data. Raw signal, followed by results for K = 2, 3, 4.

Fig. 8. K-means on eigenvectors from spectral clustering of composite
(multiple-vehicle) data. Raw signal, followed by results for K = 3.

C. Spectral embedding with K-nearest neighbors

We now test K-nearest neighbors on the eigenvectors for the
composite data. We use this as a semi-supervised classification
method, training using one entire audio sample from each of
the three different vehicles. In this way, our method reflects
an actual application where we might have known samples



of vehicles. The results for K = 16 are shown in Figure
9. The corresponding confusion matrix is given in Table I.
We allow for training points to be classified outside of their
own class (seen in the case of vehicle 3), allowing for a
better evaluation of the method’s accuracy. While a few data
points are misclassified, the vast majority (88.2%) are correct.
Training on an entire vehicle passage appears sufficient to
overcome Doppler shift effects in our data: the approaching
sounds and departing sounds of a given vehicle are correctly
placed in the same class.

Fig. 9. K-nearest neighbors on eigenvectors from spectral embedding of
composite (multiple-vehicle) data, for K = 15. Training points are shown
with red circles. Shaded regions show correct classification.

TABLE I
CLASSIFICATION RESULTS FOR K-NEAREST NEIGHBOR.

True
Obtained Vehicle 1

(white truck)
Vehicle 2

(black truck)
Vehicle 3

(jeep)
Vehicle 1 (white truck) 64 0 0
Vehicle 2 (black truck) 1 30 1

Vehicle 3 (jeep) 11 4 33

VII. CONCLUSIONS

Identifying moving vehicles from audio recordings is a
challenging and broadly applicable problem. We have demon-
strated an approach that classifies frequency signatures, apply-
ing the short-time Fourier transform (STFT) to the audio signal
and describing the sound at each 1/8-second time window
using 1500 Fourier coefficients. Using a spectral embedding,
we reduce the dimensionality of the data from 1500 to 5,
corresponding to the five eigenvectors of the graph Laplacian.
K-nearest neighbors then associates vehicle sounds with the
correct vehicle in 88.2% of the time windows in our test data.

Our analysis treats time windows as independent data
points, and therefore ignores temporal correlations. It is
possible that we could improve results by explicitly incor-
porating time information into our classification algorithm.
For instance, one straightforward approach could be to use
as data points a sliding window of larger width. In some
cases, however, ignoring time information could actually help
our method, for instance by helping the classifier correctly
associate the Doppler-shifted sounds of a given vehicle ap-
proaching and departing.

A limitation of our study is that our audio samples only
involve single vehicles, under relatively tightly controlled
conditions. The presence of multiple vehicles, or significant
external noise such as in an urban environment, would pose a
challenge to our feature extraction method. While the STFT is
standard in audio processing, the use of time windows imposes
a specific time scale that may not always be appropriate.
Furthermore, the Fourier decomposition may be insufficiently
sparse, with too many distinct Fourier components present in
vehicle audio signals. To overcome these difficulties, one could
use multiscale techniques such as wavelet decompositions that
have been proposed for vehicle detection and classification [3],
[5]. More recently developed sparse decomposition methods
may also be of use, as they implicitly learn a good choice of
basis functions from the data [10], [11], [12], [13].

An additional area for improvement is our clustering al-
gorithm. More sophisticated methods than K-means and K-
nearest neighbors may allow for vehicle identification under
less tightly controlled conditions than those in our experi-
ments, or possibly for identifying broad types of vehicles such
as cars or trucks. Such semi-supervised methods would pre-
serve the chief benefit of our approach, namely its applicability
in cases where only very limited training data are available.
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