
TCP Behavior over HFC Cable Modem Access Networks

Samir Chatterjee

Computer Information Systems Department
Georgia State University
Atlanta, GA 30302-4015.

Phone: (404)-651-3886
Fax: (404)-651-3842
Email: schatter@gsu.edu

 This work has been partially funded through a research course release program from the College of Business
Administration at Georgia State University.

Abstract:
Hybrid Fiber-Coax based CATV networks has the potential for two-way data services. Such
network providers are presently re-inventing the CATV network to provide Internet access. This
paper presents a simulation study of the dynamic behavior of TCP over HFC cable modem
networks. We believe that this is the first such study as per our knowledge that considers
asymmetry and its impact on TCP behavior. The performance of TCP connections with respect
to flow control, adaptive retransmission mechanism and slow-start congestion control are
studied and analyzed. In particular, we explain the dramatically different behavior and dynamics
that are observed for TCP connections using interactive data (remote-login), bulk data (FTP)
and web traffic (HTTP). We further study and discuss the impact of several important TCP and
system parameters to optimize performance in CATV networks.

2

1. Introduction

Today's corporations consider information to be a major corporate asset and hence are creating
company-wide information exchange utility, called an enterprise network that will provide
communications at the corporate and departmental levels. At the same time, changes in the
business environment are transforming people's mode of operation and work habits. Increasingly,
corporate employees spend time away from their offices and need to access information from
remote locations. Working from home and telecommuting are becoming popular modes of
operation and hence companies today are extending their enterprise network to include this new
segment called home access. Access to corporate data and the Internet are critical to keep
workers productive.

The recent popularity of the Internet has resulted in increased demand on our network
infrastructure. As new data and multimedia applications come into existence, it places even
further constraints on the existing networks. Among recent interest is the growth of Internet
access technology from home [1]. Several industries (telcos, cable operators and wireless) have
geared up to meet the challenge. At the present time, the CATV operators are reinventing their
CATV networks to handle reverse data capability [8] and the telcos are looking towards a new
technology called xDSL [2]. Our focus in this paper is on the former type of network.

There is a defensive aspect to cable's motivation for transitioning to residential broadband. This
service is a necessary defensive measure against the threat of direct broadcast satellite (DBS) and
new telco services. In particular, DBS has signed over five million subscribers in three years,
threatening cable's customer base for basic television and premium pay channel service.
Extending the capabilities of cable TV networks from current broadcast video business to high-
speed Internet access seems natural. Cable has a large capital base to use as leverage for
incremental applications. In addition to being the incumbent, cable has specific technical and
business advantages with which it can succeed in providing a wide-range of high-speed home
services.

Cable service is available to nearly one hundred percent of residences in the U.S and serves
nearly 65 million homes. Worldwide there are 157 million subscribers. Widespread coverage
helps attract advertising. In the U.S, cable sells $6 billion in annual advertising for national and
local spot ads. Cable has more bandwidth than current telephone access networks and wireless
networks. The speeds are so high that content providers who deliver over cable are considering
changing their content specifically to exploit the speed of the cable, for example, by adding more
audio and visual content to web pages. Finally, the top cable operators in the United States are
important content providers. TCI owns Liberty Media; Time Warner own Warner Brothers,
Turner Broadcasting, and a host of magazines (Time, Life, People, Sports Illustrated, and
Fortune). When content providers own cable properties, they have guarantees of a high-speed
outlet for their visual content, and plentiful content to occupy the many channels cable affords.

The Internet uses the TCP/IP protocol suite for supporting data transport [3, 4]. The performance
of these protocols over such new access networks remains largely unknown. It is important that
we study and analyze the behavior of these protocols over cable networks. The main contribution
of this work is an exhaustive simulation study of TCP's behavior over a Hybrid Fiber-Coax

3

(HFC) cable modem-based access network. We provide insight into the different behavior of
applications that use TCP over HFC. While we do not advocate any drastic changes to TCP
protocol at this time, our analysis clearly points out that the HFC MAC protocol and TCP can
interact in unexpected ways. Based on our analysis, the paper also suggests various parameters
that can be tuned so that one obtains superior performance over cable based networks.

The rest of the paper is divided into the following sections. In section 2, we address the
importance and relevance of this problem. Section 3 presents a brief overview of HFC cable
modem networks. It also discusses the recent IEEE 802.14 standards. In section 4, we highlight
the key features and algorithms that TCP uses which are later used throughout the paper. In
section 5, we present the simulation model and the results. Finally, we suggest some
improvement schemes and conclude with future work in section 6.

2. Why is this study important?

We strongly believe that performance study of the behavior of TCP/IP over such new access
networks is important for both technical and business reasons. First, several cable operators are
becoming ISPs to generate alternate sources of revenue. In the U.S, it is estimated that as much a
$1 billion of revenue from cable modem could be generated in 1998. Hence these vendors must
know more about the performance bottlenecks in a large-scale shared media cable. Besides there
are many technical reasons to study this:
♦ An HFC network is a highly asymmetrical network with large bandwidth downstream (30

Mb/s) and a relatively small upstream bandwidth (2 Mb/s) which is shared. Since TCP's
performance depends on Round Trip Time (RTT) and acknowledgments, its impact on such
access network is unknown.

♦ TCP is the primary mechanism of congestion control on the Internet. It is expected that the
upstream cable access channel may encounter high rates of congestion as the penetration rate
(or take rate) of subscribers goes up.

♦ HFC network is a split metropolitan network in which every coordination is done via a head-
end device. This causes unnecessary delays, which could affect network application
performance. This also forces new ways of doing address resolution (ARP) [17].

♦ Improvements prompted by a long history of investigation [10, 11, 12, 14, 15] have led to a
continuous expansion of the operating conditions under which TCP works well. There is no
study to date available in the public literature that reports how well TCP performs on HFC
networks. The performance of common client-server application over HFC was reported in
an earlier work [17].

3. Hybrid Fiber-Coax and cable modem networks

Historically, CATV networks were developed as one-way broadcast systems using a tree-and-
branch architecture [1]. The system consists of a head-end (H/E) station that collects the TV
programs, usually through satellite down-link, and then distributes them over coaxial cables
along the branches of a tree-like network to customer sites. The distance between H/E and
remote customers can be several tens of kilometers. Hence to compensate for signal attenuation,
several one-way analog amplifiers were deployed. Over time, the main coaxial trunk was
replaced with high-reliability, low attenuation fiber. This trunk extends well into a community

4

and is terminated in a fiber node. From there, coaxial segments are run into the neighborhood
and tapped into the homes. HFC systems have the potential for two-way data services. A two-
way HFC network has a bandwidth of 750 MHz, in which the range between 5 MHz and 42
MHz is used for upstream transmissions, while the range of 54 MHz and above for downstream
transmission. The spectrum between 54 MHz and 450 MHz will remain undisturbed to carry
existing analog and TV transmissions while the frequencies above 450 MHz will provide
enhanced switched and broadcast data services.

To transmit and receive digital data over a cable network, one needs a cable modem. Since HFC
offers a shared medium environment, the upstream bandwidth is to be shared by several cable
modems accessing from homes. The 40 MHz band upstream can be divided into multiple
upstream radio frequency (RF) digital channels 1 to n, each carrying a digital bandwidth in the
range 1.6 Mb/s to 10 Mb/s, for example, using a quadrature phase shift keying (QPSK)
modulation scheme. A Media Access Control (MAC) protocol is needed to share upstream
bandwidth [5, 6, 7]. To achieve widespread acceptance, both cable modems and the HFC
networks on which they operate must be standardized. The IEEE 802.14 working group is
working towards the development of physical (PHY) and MAC1 layer communication protocols
for HFC networks [9].

 4. TCP algorithms

The Transmission Control Protocol (TCP) is the primary transport protocol in the TCP/IP
protocol suite [3, 4]. It implements a reliable byte stream over the unreliable datagram service
provided by IP. As part of implementing the reliable service, TCP is also responsible for flow
and congestion control: ensuring that data is transmitted at a rate consistent with the capacities of

Figure1: TCP segment header

both the receiver and the intermediate links in the network path. Since there may be multiple
TCP connections active in a link, TCP is also responsible for ensuring that a link's capacity is
responsibly shared among the connections using it. As a result, most throughput issues are rooted
in TCP. The TCP segment header is shown in Fig. 1.

1 Industry also supports the Multimedia Cable Network System (MCNS) Data over Cable Service Interface
Specification (DOCSIS)[http://www.cablemodem.com].

0 1 6 3 1

1 6 - b i t s o u r c e p o r t n u m b e r 1 6 - b i t d e s t i n a t i o n p o r t n u m b e r

3 2 - b i t S e q u e n c e n u m b e r

3 2 - b i t A c k n o w l e d g m e n t n u m b e r

4 - b i t h d r
l e n g t h R E S S Y N , F I N , R S T

U R G , A C K , P S H
1 6 - b i t W i n d o w s i z e

1 6 - b i t T C P c h e c k s u m 1 6 - b i t U r g e n t P o i n t e r

O p t i o n s a n d D a t a (i f a n y)

5

We will study TCP's behavior using the following themes:

Sequence Numbers and Sliding/window: TCP keeps track of all data in transit by assigning each
byte a unique sequence number (Figure 1). The receiver acknowledges each byte by sending an
acknowledgment which is a cumulative indication of all received data up to a particular byte
number. TCP allocates its sequence number from a 32-bit wraparound sequence space. To ensure
that a given sequence number uniquely identifies a particular byte, TCP requires that no two
bytes with the same sequence number be active in the network at the same time.

Flow Control/Window Size: The flow control mechanism used by TCP is known as a credit
allocation scheme. The receiver needs to adopt some policy concerning the amount of data it
permits the sender to transmit. Hence every TCP segment contains a window field which allows
the receiving TCP to control how much data is being sent at any given time. The receiver
advertises a 16-bit window size to the sender. This window size reflects the current buffer space
available within the receiver to hold incoming segments. As the receiving TCP entity begins to
deliver byte streams to the application, more buffer space is released and hence bigger window
sizes may be advertised. The window measures, in bytes, the amount of unacknowledged data
that the sender can have in transit to the receiver. A conservative approach is to only allow new
segments up to the limit of available buffer space. However such a conservative flow control
scheme may limit the throughput of the transport connection in long-delay situations. The
receiver could potentially increase throughput by optimistically granting credit for space it does
not have. For example, if a receiver's buffer is full but it anticipates that it can release space for
1000 bytes within a RTT delay, it could immediately send a credit of 1000. If the receiver can
keep up with the sender, this scheme may increase throughput and can do no harm. If the sender
is faster than the receiver, however, some segments may be discarded, necessitating a
retransmission.

Retransmission timer: In order to ensure that all data sent by one end of the connection is
received by the other, TCP must retransmit segments that have been lost by the network. TCP
sets a timer (the retransmission timeout) when data is sent; if no acknowledgment is received for
the sent data before the timer expires, it is assumed that the segment was lost and the data is sent
again. TCP uses an adaptive timer mechanism. The following Jacobson/Karels algorithm is used
to measure timeout RTO.

Difference = Sample RTT - Estimated RTT
Estimated RTT = Estimated RTT + (g * Difference)
Deviation = Deviation + h(|Difference| - Deviation)

RTO = Estimated RTT+ φ * Deviation.
g is the RTT gain, h is the deviation gain and φ is RTT deviation coefficient.

Congestion control/Slow Start: A number of recent approaches have been suggested to manage
the send window for TCP [10, 11]. The size of TCP's send window can have a critical effect on
whether TCP can be used efficiently without causing congestion. The larger the send window
used in TCP, the more segments that a TCP source can send before it must wait for an ACK. In
the ordinary course of events, the self-clocking nature of TCP paces TCP appropriately.
However, when connection is first initialized, it has no such pacing to guide it. A procedure
known as slow-start is recommended. TCP makes use of congestion window, measured in

6

segments rather than octets. At any time, TCP transmission is constrained by the following
relationship:

awnd = MIN[credit, cwnd]
awnd = allowed window in segments that TCP will currently allow
cwnd = congestion window in segments.
credit = the amount of unused credit granted in the most recent ACK in segments. The value is obtained from the
window field advertised by the other end.

When a new connection is opened, the TCP entity initializes cwnd = 1. That is, TCP is only
allowed to send 1 segment and then must wait for acknowledgment before transmitting a second
segment. Each time an ACK is received, the value of cwnd is increased by 1, up to some
maximum value. In effect, the slow-start mechanism probes the internet to make sure that it is
not sending too many segments into an already congested environment. The term slow-start is a
bit of a misnomer, because cwnd actually grows exponentially.

Dynamic window sizing on congestion: Consider a TCP entity that initiates a connection and
goes through the slow-start procedure. At some point, either before or after cwnd reaches the size
of the credit allocated by the other side, a segment is lost (timeout). This is a signal that
congestion is occurring. It is not clear how serious the congestion is. Therefore, a prudent
procedure would be to reset cwnd = 1 and begin the slow-start process all over. While this may
seem reasonable, Jacobson [10] points out that "it is easy to drive a network into saturation but
hard for the net to recover." In other words, once congestion occurs, it may take a long time for
the congestion to clear. Thus, the exponential growth of cwnd under slow-start may be too
aggressive and may worsen the congestion. Instead, Jacobson proposed the use of slow start to
begin with, followed by a linear growth in cwnd.

Note that two successive releases of the Berkeley TCP code, referred to as Tahoe and Reno, use
a technique called fast retransmit and fast recovery that have been shown to improve
performance under certain situations. We do not use these in our implementation and hence are
not discussed.

5. Simulation

Most of the results in this paper are derived from simulations done using a tool called OPNET
[16]. The various simulation parameters that were used is summarized in Table 1 while the HFC
cable modem network simulation model is shown in Figure 2. The network consists of a H/E
node and 5 home stations exchanging messages over HFC access network. Each home node uses
a cable modem and their entire protocol stack is also shown in Fig. 2.

Each home node is busy running some application that uses TCP over the HFC cable link. Three
client-server applications namely, Remote-login, File transfer and Web browsing are modeled.
Remote-login (RL) sessions represent interactive data application that uses TCP. It is
characterized by terminal traffic characteristics that typically include login rate, command rate
and login duration. RL application typically uses TCP’s PUSH feature to send each command as
quickly as possible.

7

Link bandwidths Upstream = 2 Mb/s
Downstream = 30 Mb/s

Distance of H/E to first home 10 km
Max segment size MSS 536 bytes
TCP buffer size 65,535 bytes
RTT gain 0.125
Number of home nodes 5
Applications Remote-login (TELNET), File transfer

(FTP), Web browsing (HTTP)
HFC MAC protocol IEEE 802.14
H/E router buffer size 512 packets (typical)
Simulation duration 4000 seconds

Table 1: General Simulation Parameters

Figure 2: Simulation model & protocol stacks

The FTP application on the other hand models a more bulk data transfer scenario that also uses
TCP. This application is typically characterized by a file transfer rate, average file size and the
get/put direction of file upload or download. An FTP application typically drives TCP to keep
the pipe full as much as possible. We also used a web browser application that models HTTP
traffic. In each session, the client process can establish multiple connections to servers, send
multiple request commands for HTML pages and inline objects and process the request response.

Results and discussion:
In Fig. 3 and Fig. 4, we observe the dynamics of TCP for interactive and bulk data connections.
The behavior of a remote-login session that uses TCP and starts at 942.0 sec and ends at 3841.2

8

sec is captured in Fig. 3. In a RL application, each keystroke is sent from client to the server 1
byte at a time and the server echo the characters back. Normally, the server piggyback's the ack
of received data2 along with the echoed data into one TCP segment and hence we refer to these
as delayed ack's. Treating a command request as a unit of transfer creates another problem for
RL and that is it creates several tiny segments (1-byte of data with 40 bytes of TCP and IP
header overhead). These tinygrams cause congestion on MAN and WAN. Nagle algorithm is
used to tackle this problem in which a TCP connection can have only one outstanding small
segment that has not yet been acknowledged. So small amounts of data are collected by TCP and
sent in a single segment when the ack arrives.

In Panel #1 of Fig. 3, we show the sent sequence number for the TCP entity at the home node.
Command request segments are generated and sent but the long horizontal steps clearly show
retransmission of the same sequence number segments. The RL session is facing congestion and
loss due to which interactive data have to be retransmitted causing unnecessary delays. The
graph has a step function nature but we never see any negative slope. This is because Nagle's
algorithm is being used in which only one tinygram is allowed to be send until its ACK returns.
Hence the longer horizontal steps signify retransmission of the lost segments. Panel #2 shows the
measured RTT along with the RTO used by TCP for timeout. Note that while several thousands
of TCP segments are sent, only a few are used as samples for measuring RTT. The gaps in the
RTT samples are caused by retransmissions and Karn's algorithm prevents us from updating our
estimators until another segment is transmitted and acknowledged. Also note that TCP's
calculated RTO is always a multiple of 500 ms due to timer granularity. Panel #3 shows how the
cwnd varies with time for the duration of the connection. It starts at 1 segment (MSS = 536
bytes) and exponentially tries to grow using slow-start but as seen fails due to heavy congestion
at the H/E which causes cwnd to drop to 1 segment. It never really recovers from slow start and
hence cannot achieve high throughput. In Panel #4, note the size of the receivers advertised
window which is initialized at 65,536 bytes but does not change much since tinygrams from RL
can be quickly processed and hence the buffer always has enough space to hold arriving
segments.

All these parameters contrast very heavily for bulk data transfer using FTP as seen in Figure 4.
The particular TCP connection over which the files were transferred lasted between 1021.6 sec
and 1946.4 sec. So this is a relatively short connection when compared to RL. As seen from
Panel #1, the sent sequence numbers increases linearly with no segment being retransmitted.
Note that there are no sequence number wrap-ups while data is in transit. While this is a problem
for long propagation-delay paths [13] but for CATV links, PAWS (protection against wrapped
sequence numbers) may not be required. This FTP session gets a fair allocation of the
bandwidth.

In Panel #3 of Fig. 4, we see cwnd for this ftp transfer which clearly shows the slow-start
procedure rising exponentially. This is an ideal behavior expected from TCP. Comparing Panel
#4 with that of the RL session, it is clear that the receivers advertised window changes
significantly during the connection dropping to 35,000 bytes or less. This is because FTP can
keep the pipe full with steady streams of data and hence the receiver's buffer fills up before

2 In our implementation, we transfer commands between the terminal and the server with the
average command size from terminal being 60 bytes

9

application can read data. It is evident from the results that bulk data transfer performs far better
than interactive data transfer.

Why does RL and FTP TCP sessions exhibit dramatically different behavior? How much of this
are due to the HFC MAC protocol characteristics? What are the implications? When an
interactive RL connection shares upstream bandwidth with a bulk transfer FTP connection, the
interactive session suffers in performance. There could be several reasons for that. First note that
TCP connection arrival follows some stochastic process and hence the exact behavior may
depend on the currently existing connection mix through the upstream. Besides in a HFC MAC,
cable modems contend for getting reservation slots to transmit their data. A bulk data application
can easily fill up segments up to MSS and request guaranteed slots for transmission while it is
harder for interactive application to guess a priori how much to reserve. When cable modems
send their reservation requests through contention mini-slots, it is often difficult to choose the
necessary reservation for interactive data. Hence to improve the performance of interactive data
transfer, some better scheduling algorithm may be required at the H/E to better utilize TCP. This
has major implications since telecommuting is an application that MSO's are betting on for the
penetration of the cable modem business.

We also had a web browser client connecting to a web server. Every TCP connection was very
short lived for HTTP and completed even before the slow start algorithm has finished (see Fig.
5). The user will never experience the full link bandwidth. All the transfer time will be spent in
slow start. This problem is particularly severe for HTTP that is notorious for starting a new TCP
connection for every item on a page. This poor protocol design is a (major) reason Web
performance on the Internet is perceived as poor: the Web protocols never let TCP get up to full
speed. We expect this to remain true even over HFC access networks.

There are at least four system resources that could affect performance: maximum segment size
(MSS), size of the IP buffer at H/E, TCP's receive buffer size and server processing speed at
H/E. In Fig. 6, we study the impact of MSS on a TCP connection's throughput and delay. The
MSS is the largest "chunk" of data that TCP will send to the other end. When a connection is
established, each end can announce its MSS. The resulting IP datagram is normally 40 bytes
larger: 20 bytes for the TCP header and 20 bytes for the IP header. In general, the larger the MSS
the better, until fragmentation occurs. This may not be true however in all cases. A larger size
allows more data to be sent in each segment, amortizing the cost of IP and TCP headers. For FTP
over TCP (see Panel #1), a larger value of MSS results in better TCP throughput. The TCP end-
to-end delay varies inversely with MSS and smaller MSS (536 bytes) have much higher delays.
Choosing the right MSS is always difficult. The MSS lets a host limit the size of datagrams that
the other end sends it. When combined with the fact that a host can also limit the size of the
datagrams that it sends, this lets a host avoid fragmentation when a host is connected to a
network with a small MTU. The only way to avoid fragmentation is to discover the path MTU
which remains tricky even now. While MSS clearly impacts FTP transfers, it may not affect
interactive transfers such as RL (see Panel #2 and #4). In a RL TCP connection, only a few bytes
are transferred and hence smaller MSS segments perform better both in throughput and delays
than larger MSS since the large MSS is really never utilized with user data.

10

We can determine the maximum possible throughput on a TCP connection. It depends on the
window size, propagation delay, and data rate. In TCP, window size and sequence numbers refer
to individual octets. We use the following notation:

ω = TCP window size (octets)
ρ = Data rate (bps) at TCP source available to a given TCP connection
δ = Propagation delay (seconds) between TCP source and destination over a given TCP

connection.

For simplicity, let us ignore the overhead bits in a TCP segment. Suppose that a source TCP
entity begins to transmit a sequence of octets over a connection to a destination. It will take δ
seconds for the first octet to arrive at the destination and an additional time δ for an
acknowledgment to return. During that time, the source, if not limited, could transmit a total of
2ρδ bits, or ρδ/4 octets. In fact the source is limited to window size of ω octets (advertised by
H/E) until an acknowledgment is received. Accordingly, if ω > ρδ/4, the maximum possible
throughput can be achieved over this connection. If ω < ρδ/4, then the maximum achievable
normalized throughput is just the ratio of ω to ρδ/4.

For a CATV network, ρ = 2 Mbps in the upstream assuming that a home node has full bandwidth
access. With a propagation delay of 5 µsec/km and assuming a home node to be at a distance of
10 km from the H/E, then δ = 50 µsec. Hence ω > ρδ/4 = 25 bytes. The maximum window size
is 216 - 1 = 65,535 octets should suffice for most applications. Fig. 7, shows the impact of typical
TCP receiver buffer sizes (window) on overall performance. Clearly, the above shows the
maximum throughput achievable in theory but in reality due to sharing of several TCP
connections in the upstream link, the actual throughput would be less. We used two standard
values for TCP receive buffer, those of 4096 bytes and 65,535 bytes. As seen, FTP connections
achieve higher throughput and lower delay for 65,535 byte receive buffers in comparison to
shorter buffer sizes. But the impact of any window size on RL TCP connection is not that clear.
It may at times achieve higher throughput with smaller TCP receive buffer size. Again a possible
cause of this could be smaller datagram sizes and Nagle's algorithm restricting the number of
datagrams to be sent before ACK arrives.

Table 2: Required window size for 100 ms of RTT

In Fig. 8, we study and analyze the impact of IP buffer size at the H/E on overall performance.
One easy way to support a large number of users (and hence TCP connections) is to provide
more storage in the network with either higher bandwidth or more buffering within the H/E IP

Bandwidth Delay x Bandwidth
Product

T1 (1.5 Mbps) 18 KB
Ethernet (10 Mbps) 122 KB

T3 (45 Mbps) 549 KB
FDDI (100 Mbps) 1.2 MB
OC-3 (155 Mbps) 1.8 MB

OC-12 (622 Mbps) 7.4 MB
OC-24 (1.2 Gbps) 14.8 MB

11

processor. We considered buffering because it is more practical. Even with small number of
connections, bottleneck routers should have at least one delay-bandwidth product of buffering.
Table 2 shows the delay x bandwidth product for several common network technologies
encountered in daily life.

A TCP connections one-way propagation time in a HFC link is 50 µsec. A 2 Mbps link can only
forward 25 bytes of data during that latency time from a home node to the H/E. So theoretically,
the IP buffer within the H/E need only be of size 25 bytes, which is not even a packet (assuming
minimum IP datagram to be of size 576 bytes). But for all practical purposes, we must have
sufficient buffer sizes so that it does not cause unnecessary packet loss (when multiple TCP
clients transmit simultaneously) that could result in TCP retransmission and thereby wasting
bandwidth. Note that the application empties the TCP buffer and hence the server processing
speed (in jobs/sec) also plays a critical role in overall performance (see Fig. 9). While buffer
requirements shown above in Table 2 for various networking technologies assume symmetry and
equal requirements at either end of the connection, the asymmetric speeds of an HFC access
network impose different buffering requirements at the H/E and at each home node. This is
because at the downstream direction, H/E can transmit at full speeds of 30 Mbps giving rise to a
bandwidth x delay product of 375 bytes. Hence each home node should have a buffer of at least
375 bytes. This gives a total of at least 400 bytes that any TCP sender must keep in its window if
it wishes to keep the network busy.

Assuming IP packets of size 576 bytes, we tested the performance for various buffer sizes as
shown in Fig. 8. Here we plot the effective TCP throughput, which is the average bps forwarded
to the application layer by the TCP layer in the H/E node for all connections. At higher upstream
load (caused by higher file transfer rates), the total throughput is good with even small number of
buffers (80 packets/buffer). As shown above in the calculation, there are always more buffer
space than total TCP's sending packets. The other panel shows the effective TCP delay versus
load. A small IP queue under high load may result in higher packet loss rates which in turn
causes TCP to time-out and retransmit. This leads to higher TCP delays.

In Fig. 9, we show the impact of server processing speed on the aggregate TCP throughput and
delay of all connections within the H/E server. Specifically, two job rates of 1000 and 5000
jobs/sec were chosen. For underutilized upstream links, it does not seem to make too much of a
difference while at extremely high link utilization3, higher server speeds is expected to give
better system performance.

6. Conclusions and future work

This paper is the first attempt to understand the behavior of TCP over cable modem networks.
The salient features of HFC network presents interesting challenges to TCP. Our main research
contributions are as follows:
1. Interactive data versus bulk data transport over HFC MAC links have very different behavior

which is due to both TCP's inherent slow-start and congestion avoidance schemes as well as
the nature of the MAC protocol. In particular we showed that interactive RL applications

3 We ran out of memory in our simulation at very high loads and hence could not project the graphs shown to higher
link utilization levels.

12

may under-perform largely due to the fact that it is difficult for such applications to reserve a
priori the number of upstream slots. On the other hand, a bulk data application (such as FTP)
can easily fill up to a MSS and yield better throughput and delay performance. This suggests
two possible avenues for further research. First, scheduling algorithm at the MAC level needs
to be investigated in light of how TCP may interact and have an impact for the high-level
application. Second some form of QoS features has to be overlaid in the architecture.

2. We also showed that web traffic using TCP are very short-lived and hence TCP always
remains in slow-start and never achieve full speed. We are aware that this problem is now
being alleviated by HTTP 1.1 specification but thorough testing still remains to be done.

3. TCP is typically unfair towards connections with higher propagation delays and this could
cause performance problems when multiplexing short and long-haul traffic on HFC upstream
links. For guaranteed performance in highly utilized networks, each TCP connection should
be given reserved buffer and bandwidth resources throughout the network. Typically, the
resource allocation would be determined at connection set up and enforced at routers using
per connection queuing. Since administering the resources allocated to every best effort
connection may be excessively expensive, a more feasible option for HFC service providers
would be to use some form of bandwidth allocation algorithm per class within the H/E. Using
such a scheduling that does load balancing, the unfairness we pointed out for RL, FTP and
Web traffic could be improved if not eliminated all together.

4. To test the viability of carrying traffic with various latency requirements on a single upstream
channel, Broadcom recently modeled a set of scheduling implementations in conjunction
with fragmentation support using a modified version of the MCNS MAC [18]. The
modifications included an improved framing and scheduling algorithm, an additional binary
Quality of Service (QoS) attribute for subscriber cable modems and support for source
fragmentation. The scheduling algorithm used the polling mechanism suggested by
MediaOne and MIT. Cable modems with a high QoS requirement were polled periodically
by the H/E to allow them to request bandwidth. The resulting requests were given higher
priority than those from best effort modems in granting bandwidth in upcoming frames. The
improvement in performance gained through polling, prioritization and fragmentation have
been shown. Packet delays are well bounded with an upper bound near 20 ms (as required for
voice). However, the interactions of TCP/IP over the modified HFC MAC with the new
polling scheduling are not yet studied.

There is room for more work on flow control mechanisms that maintain low loss rate regardless
of load. As more HFC networks are deployed, more analysis of Internet traffic is needed
especially to look at aggregate TCP flows and how they actually share the upstream link
bandwidth. Also, the effects on performance as more homes come on-line need to be
investigated. The behavior of large TCP flows over the bottleneck upstream link can also be
explored. As a future work, we would like to investigate the impact of TCP in supporting real-
time audio and video applications that can be run from home over HFC networks.

Acknowledgments: The author would like to thank Pradeep Singh of Mil3 for valuable
discussions during the course of this work.

13

References:
[1] A. Paff, “Hybrid Fiber/Coax in the public telecommunications infrastructure”, IEEE
Communications, April 1995.
[2] P. Kyees, R. McConnel, K. Sistanizadeh, "ADSL: A new twisted-pair access to the
Information High-way", IEEE Communications, April 1995.
[3] Douglas E. Comer. Internetworking with TCP/IP, Vol. 1:Principles, Protocols, and
Achitecture, 3rd Edition, Prentice Hall, 1996.
[4] W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Reading, MA:Addison-Wesley,
1994.
[5] D. H. Su, N. Golmie, G. Pieris, S. Masson, “Preliminary simulation results of the MAC
protocol proposals”, IEEE 802.14/96-0126, May 1996.
[6] D. Sala, J. Limb, “A protocol for efficient transfer of data over fiber/cable systems”,
Proceedings of IEEE INFOCOM, 1996.
[7] J. E. Dail, M. A. Dajer, Chia-Chang Li, P. D. Magill, C. A. Siller, K. Sriram, N. Whitaker,
“Adaptive Digital Access Protocol: A Mac Protocol for Multiservice Broadband Access
Networks”, IEEE Communications, March 1996.
[8] E. J. Hernandez-Valencia, “Architectures for Broadband Residential IP Services Over CATV
Networks”, IEEE Network, Jan/Feb 1997.
[9] IEEE 802.14, “Cable TV MAC/PHY protocol working group functional requirements”,
October 19, 1994.
[10] V. Jacobson, "Congestion Avoidance and Control", Proceedings of SIGCOMM'88,
Computer Communication Review, August 1988.
[11] J. C. Hoe, "Improving the start-up behavior of a congestion control scheme for TCP", in
Proceedings of SIGCOMM'96, Stanford, CA, August 26-30, 1996.
[12] K. Fall, S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and SACK TCP",
Computer Communication Review, Vol. 26, No. 3, July 1996.
[13] C. Partridge, T. Shepard, "TCP/IP performance over Satellite Links", IEEE Network,
September/October 1997.
[14] T. V. Lakshman, U. Madhow, "The performance of TCP/IP for networks with high-
bandwidth-delay products and random loss", IEEE/ACM Transactions on Networking, Vol. 5,
No. 3, June 1997.
[15] R. Morris, "TCP behavior with many flows", Proceedings of ICNP97, Atlanta, GA, Oct.
1997.
[16] OPNET 4.0, Mil3 Inc., Washington DC, 1998.
[17] S. Chatterjee, "Performance results and operational issues of client-server IP applications
over HFC cable networks", Proceedings of 6th IEEE Singapore International Conference on
Networks'98 (SICON'98), Singapore, June 29-July 3, 1998.
[18] Thomas Quigley and David Hartman, "MCNS Data-Over-Cable Protocol",
Communications Engineering Design, March 1998.

14

Figure 3: TCP connection behavior for interactive data (Remote-login application)

Figure 4: TCP connection behavior for bulk data (FTP application)

15

Figure 5: TCP connection behavior for world-wide web traffic (HTTP application)

Figure 6: Impact of TCP MSS on throughput

16

Figure 7: Impact of TCP receive buffer on FTP and RL throughput and delay

Figure 8: Impact of H/E IP buffer size on throughput

17

Figure 9: Impact of server processing speed on aggregate TCP throughput and delay at H/E.

