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Multiclass Data Segmentation Using Diffuse
Interface Methods on Graphs

Cristina Garcia-Cardona, Ekaterina Merkurjev, Andrea L. Bertozzi, Arjuna Flenner, and Allon G. Percus

Abstract—We present two graph-based algorithms for multiclass segmentation of high-dimensional data on graphs. The algorithms
use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation and graph cuts. A multiclass extension
is introduced using the Gibbs simplex, with the functional’s double-well potential modified to handle the multiclass case. The first
algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm uses a graph adaptation of the
classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the
performance of both algorithms experimentally on synthetic data, image labeling, and several benchmark data sets such as MNIST,
COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian,
and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current
state-of-the-art in multiclass graph-based segmentation algorithms for high-dimensional data.

Index Terms—Segmentation, Ginzburg-Landau functional, diffuse interface, MBO scheme, graphs, convex splitting, image processing, high-

dimensional data

1 INTRODUCTION

ULTICLASS segmentation is a fundamental problem in

machine learning. In this paper, we present a general
approach to multiclass segmentation of high-dimensional
data on graphs, motivated by the diffuse interface model in
[4]. The method applies L, gradient flow minimization of
the Ginzburg-Landau (GL) energy to the case of functions
defined on graphs.

The GL energy is a smooth functional that converges, in
the limit of a vanishing interface width, to the total variation
(TV) [5], [44]. There is a close connection between TV mini-
mization and graph cut minimization. Given a graph
G = (V, E) with vertex set V, edge set E, and edge weights
wj for i, j € V, the TV norm of a function f on V' is

1l =5 3 wild: = il 1)
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If f; is interpreted as a classification of vertex 4, minimizing
TV is exactly equivalent to minimizing the graph cut. TV-
based methods have recently been used [8], [9], [57] to find
good approximations for normalized graph cut minimiza-
tion, an NP-hard problem. Unlike methods such as spectral
clustering, normalized TV minimization provides a tight
relaxation of the problem, though cannot usually be solved
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exactly. The approach in [4] performs binary segmentation
on graphs by using the GL functional as a smooth but arbi-
trarily close approximation to the TV norm.

Our new formulation builds on [4], using a semi-super-
vised learning (SSL) framework for multiclass graph seg-
mentation. We employ a phase-field representation of the
GL energy functional: a vector-valued quantity is assigned
to every node on the graph, such that each of its compo-
nents represents the fraction of the phase, or class, present
in that particular node. The components of the field variable
add up to one, so the phase-field vector is constrained to lie
on the Gibbs simplex. The phase-field representation, used
in material science to study the evolution of multi-phase
systems [32], has been studied previously for multiclass
image segmentation [47]. Likewise, the simplex idea has
been used for image segmentation [13], [37]. However, to
the best of our knowledge, our diffuse interface approach
is the first application of a vector-field GL representation to
the general problem of multiclass semi-supervised classifi-
cation of high-dimensional data on graphs.

In addition, we apply this Gibbs simplex idea to the
graph-based Merriman-Bence-Osher (MBO) scheme devel-
oped in [49]. The MBO scheme [50] is a well-established
PDE method for evolving an interface by mean curvature.
As with the diffuse interface model, tools for nonlocal calcu-
lus [33] are used in [49] to generalize the PDE formulation to
the graph setting. By introducing the phase-field representa-
tion to the graph-based MBO scheme, we develop another
new and highly efficient algorithm for multiclass segmenta-
tion in a SSL framework.

The main contributions of our work are therefore two-
fold. First, we introduce two new graph-based methods
for multiclass data segmentation, namely a multiclass GL
minimization method based on the binary representation
described in [4] and a multiclass graph-based MBO
method motivated by the model in [49]. Second, we pres-
ent very efficient algorithms derived from these methods,

0162-8828 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



GARCIA-CARDONA ET AL.: MULTICLASS DATA SEGMENTATION USING DIFFUSE INTERFACE METHODS ON GRAPHS

and applicable to general multiclass high-dimensional
data segmentation.

This paper is organized as follows. In Section 2, we dis-
cuss prior related work, as well as motivation for the meth-
ods proposed here. We then describe our two new
multiclass algorithms in Section 3 (one in Section 3.1 and
one in Section 3.2). In Section 4, we present experimental
results on benchmark data sets, demonstrating the effective-
ness of our methods. Finally, in Section 5, we conclude and
discuss ideas for future work.

2 PREvVIOUS WORK

2.1 General Background
In this section, we present prior related work, as well as spe-
cific algorithms that serve as motivation for our new multi-
class methods.

The discrete graph formulation of GL energy minimiza-
tion is an example of a more general form of energy (or
cost) functional for data classification in machine learning,

E(Y) = R(Y) + nlly — ¥, (2)

where ¥ is the classification function, R() is a regulariza-
tion term, and | — ¥/| is a fidelity term, incorporating
most (supervised) or just a few (semi-supervised) of the
known values . The choice of R has non-trivial consequen-
ces in the final classification accuracy. In instances where
| - || is the Ly norm, the resulting cost functional is a trade-
off between accuracy in the classification of given labels and
function smoothness. It is desirable to choose R to preserve
the sharp discontinuities that may arise in the boundaries
between classes. Hence the interest in formulations that can
produce piecewise constant solutions [7].

Graph-based regularization terms, expressed by way of
the discrete Laplace operator on graphs, are often used in
semi-supervised learning as a way to exploit underlying
similarities in the data set [3], [14], [61], [66], [67], [68]. Addi-
tionally, some of these methods use a matrix representation
to apply eq. (2) to the multiple-class case [14], [61], [66], [68].
The rows in the matrix correspond to graph vertices and the
columns to indicator functions for class membership: the
class membership for vertex i is computed as the column
with largest component in the ith row. The resulting mini-
mization procedure is akin to multiple relaxed binary classi-
fications running in parallel. This representation is different
from the Gibbs simplex we use, as there is usually no
requirement that the elements in the row add up to 1. An
alternative regularization method for the graph-based mul-
ticlass setup is presented in [56], where the authors mini-
mize a Kullback-Leibler divergence function between
discrete probability measures that translates into class mem-
bership probabilities.

Not all the methods deal directly with the multiple clas-
ses in the data set. A different approach is to reduce the
multiclass case to a series of two-class problems and to com-
bine the sequence of resulting sub-classifications. Strategies
employed include recursive partitioning, hierarchical classi-
fication and binary encodings, among others. For example,
Dietterich and Bakiri use a binary approach to encode the
class labels [22]. In [39], a pairwise coupling is described, in
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which each two-class problem is solved and then a class
decision is made combining the decisions of all the subpro-
blems. Goldstein and Osher present a method involving
Cheeger cuts and split Bregman iteration [34] to build a
recursive partitioning scheme in which the data set is
repeatedly divided until the desired number of classes is
reached. The latter scheme has been extended to mutliclass
versions. In [10], a multiclass algorithm for the transductive
learning problem in high-dimensional data classification,
based on ¢! relaxation of the Cheeger cut and the piecewise
constant Mumford-Shah (MS) or Potts models, is described.
Recently, a new TV-based method for multiclass clustering
has been introduced in [9].

Our methods, on the other hand, have roots in the contin-
uous setting as they are derived via a variational formula-
tion. Our first method comes from a variational formulation
of the L, gradient flow minimization of the GL functional
[4], but which in a limit turns into 7V minimization. Our
second method is built upon the MBO classical scheme to
evolve interfaces by mean curvature [50]. The latter has con-
nections with the work presented in [26], where an MBO-
like scheme is used for image segmentation. The method is
motivated by the propagation of the Allen-Cahn equation
with a forcing term, obtained by applying gradient descent
to minimize the GL functional with a fidelity term.

Alternative variational principles have also been used for
image segmentation. In [47], a multiclass labeling for image
analysis is carried out by a multidimensional total variation
formulation involving a simplex-constrained convex opti-
mization. In that work, a discretization of the resulting
PDEs is used to solve numerically the minimization of the
energy. Also, in [13] a partition of a continuous open
domain in subsets with minimal perimeter is analyzed. A
convex relaxation procedure is proposed and applied to
image segmentation. In these cases, the discretization corre-
sponds to a uniform grid embedded in the euclidean space
where the domain resides. Similarly, diffuse interface meth-
ods have been used successfully in image impainting [6],
[23] and image segmentation [26].

While our algorithms are inspired by continuous pro-
cesses, they can be written directly in a discrete combinato-
rial setting defined by the graph Laplacian. This has the
advantage, noted by Grady [37], of avoiding errors that
could arise from a discretization process. We represent the
data as nodes in a weighted graph, with each edge assigned
a measure of similarity between the vertices it is connecting.
The edges between nodes in the graph are not the result of a
regular grid embedded in an euclidean space. Therefore, a
nonlocal calculus formulation [33] is the tool used to gener-
alize the continuous formulation to a (nonlocal) discrete
setting given by functions on graphs. Other nonlocal formu-
lations for weighted graphs are included in [25], while [35]
constitutes a comprehensive reference about techniques to
cast continuous PDEs in graph form. The approach of defin-
ing functions with domains corresponding to nodes in a
graph has successfully been used in areas, such as spectral
graph theory [16], [51].

Graph-based formulations have been used extensively
for image processing applications [7], [18], [19], [25], [36],
[37], [38], [48], [54]. Interesting connections between these
different algorithms, as well as between continuous and
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discrete optimizations, have been established in the litera-
ture. Grady has proposed a random walk algorithm [37]
that performs interactive image segmentation using the
solution to a combinatorial Dirichlet problem. Elmoataz
et al. have developed generalizations of the graph Laplacian
[25] for image denoising and manifold smoothing. Couprie
et al. in [18] define a conveniently parameterized graph-
based energy function that is able to unify graph cuts, ran-
dom walker, shortest paths and watershed optimizations.
There, the authors test different seeded image segmentation
algorithms, and discuss possibilities to optimize more gen-
eral models with applications beyond image segmentation.
In [19], alternative graph-based formulations of the continu-
ous max-flow problem are compared, and it is shown that
not all the properties satisfied in the continuous setting
carry over to the discrete graph representation. For general
data segmentation, Bresson et al. in [8], present rigorous
convergence results for two algorithms that solve the
relaxed Cheeger cut minimization, and show a formula that
gives the correspondence between the global minimizers of
the relaxed problem and the global minimizers of the com-
binatorial problem. In our case, the convergence property of
GL to TV has been known to hold in the continuum [44],
but has recently been shown in the graph setting as well [5].

2.2 Binary Segmentation Using the
Ginzburg-Landau Functional

The classical Ginzburg-Landau functional can be written as

CL(w) =5 / VuPde + - / D (u)dz, 3)

where u is a scalar field defined over a space of arbitrary
dimensionality and representing the state of the phases in the
system, V denotes the spatial gradient operator, ®(u) is a dou-
ble-well potential, such as ®(u) =1 (u? — 1), and e is a posi-
tive constant. The two terms are: a smoothing term that
measures the differences in the components of the field, and a
potential term that measures how far each component is from
a specific value (41 in the example above). In the next section,
we derive the proper formulation in a graph setting.

It is shown in [44] that the ¢ — 0 limit of the GL func-
tional, in the sense of I'-convergence, is the total variation
semi-norm:

GL(u) =r [lullgy- (4)

Due to this relationship, the two functionals can sometimes be
interchanged. The advantage of the GL functional is that its
L, gradient flow leads to a linear differential operator, which
allows us to use fast methods for minimization.

Equation (3) arises in its continuum form in several imag-
ing applications including inpainting [6] and segmentation
[26]. In such problems, one typically considers a gradient
flow in which the continuum Laplacian is most often discre-
tized in space using the four-regular graph. The inpainting
application in [6] considers a gradient flow in an H~! inner
product resulting in the biharmonic operator which can be
discretized by considering two applications of the discrete
Laplace operator. The model in (3) has also been general-
ized to wavelets [23], [24] by replacing the continuum Lap-
lacian with an operator that has eigenfunctions specified by
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the wavelet basis. Here we consider a general graphical
framework in which the graph Laplacian replaces the con-
tinuum Laplace operator.

We also note that the standard practice in all of the
examples above is to introduce an additional term in the
energy functional to escape from trivial steady-state solu-
tions (e.g., all labels taking on the same value). This leads
to the expression

E(u) = GL(u) + F(u, 1), (5)

where F' is the additional term, usually called fidelity. This
term allows the specification of any known information, for
example, regions of an image that belong to a certain class.

Inspired in part by the PDE-based imaging community,
where variational algorithms combining ideas from spectral
methods on graphs with nonlinear edge detection methods
are common [33], Bertozzi and Flenner extended in [4] the
L, gradient flow of the Ginzburg-Landau energy functional
to the domain of functions on a graph.

The energy E(u) in (5) can be minimized in the L, sense
using gradient descent. This leads to the following dynamic
equation (modified Allen-Cahn equation):

ou SGL SF 1 SF
E:_(?_U_MEZEAU_EQI(U)_ME7 (6)
where A is the Laplacian operator. A local minimizer is
obtained by evolving this expression to steady state. Note that
FE is not convex, and may have multiple local minima.
Before continuing further, let us introduce some graph
concepts that we will use in subsequent sections.

2.2.1 Graph Framework for Large Data Sets

Let G be an undirected graph G = (V, E), where V and E
are the sets of vertices and edges, respectively. The verti-
ces are the building blocks of the data set, such as points
in R" or pixels in an image. The similarity between verti-
ces i and j is measured by a weight function w(s,j) that
satisfies the symmetric property w(i,j) =w(j,i). A large
value of w(i,j) indicates that vertices ¢ and j are similar
to each other, while a small w(i, j) indicates that they are
dissimilar. For example, an often used similarity measure
is the Gaussian function

w(i, j) = exp ( CY)N ) ) (7)

o2

with d(i, j) representing the distance between the points associ-
ated with vertices 7 and 7, and o? a positive parameter.

Define W as the matrix W;; = w(7,j), and define the
degree of a vertex i € V' as

Jjev

If D is the diagonal matrix with elements d;, then the graph
Laplacian is defined as the matrix L =D — W.

2.2.2 Ginzburg-Landau Functional on Graphs

The continuous GL formulation is generalized to the case of
weighted graphs via the graph Laplacian. Nonlocal calculus,
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such as that outlined in [33], shows that the Laplace operator
is related to the graph Laplacian matrix defined above, and
that the eigenvectors of the discrete Laplacian converge to
the eigenvectors of the Laplacian [4]. However, to guarantee
convergence to the continuum differential operator in the
limit of large sample size, the matrix L must be correctly
scaled [4]. Although several versions exist, we use the sym-
metric normalized Laplacian

L,=D?LD2=I-D WD (9)

since its symmetric property allows for more efficient imple-
mentations. Note that Ls satisfies:

(u, L) = %ZMJ)(\ZTU—\/E)

i.J

(10)

for all w € R". Here the subscript ¢ refers to the ith coordi-
nate of the vector, and the brackets denote the standard
dot product. Note also that Ls has nonnegative, real-val-
ued eigenvalues.

Likewise, it is important to point out that for tasks such
as data classification, the use of a graphs has the advantage
of providing a way to deal with nonlinearly separable clas-
ses as well as simplifying the processing of high dimen-
sional data.

The GL functional on graphs is then expressed as

GL(u) :§<u, Lsu) +%Z(u3 - 1)2, (11)

€iev

where wu; is the (real-valued) state of node . The first term
replaces the gradient term in (3), and the second term is the
double-well potential, appropriate for binary classifications.

2.2.3 Role of Diffuse Interface Parameter e

In the minimization of the GL functional, two conflicting
requirements are balanced. The first term tries to maintain a
smooth state throughout the system, while the second term
tries to force each node to adopt the values corresponding
to the minima of the double-well potential function. The
two terms are balanced through the diffuse interface param-
eter e.

Recall that in the continuous case, it is known that the GL
functional (smoothing + potential) converges to total varia-
tion in the limit where the diffuse interface parameter ¢ — 0
[44]. An analogous property has recently been shown in the
case of graphs as well, for binary segmentations [5]. Since
TV is an L;-based metric, TV-minimization leads to sparse
solutions, namely indicator functions that closely resemble
the discrete solution of the original NP-hard combinatorial
segmentation problem [9], [57]. Thus, the GL functional
actually becomes an L; metric in the small € limit, and leads
to sharp transitions between classes. Intuitively, the conver-
gence of GL to TV holds because in the limit of a vanishing
interface, the potential takes precedence and the graph
nodes are forced towards the minima of the potential,
achieving a configuration of minimal length of transition.
This is contrast to more traditional spectral clustering
approaches, which can be understood as L,-based methods
and do not favor sparse solutions. Furthermore, while the
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smoothness of the transition in the GL functional is regu-
lated by e, in practice the value of e does not have to be
decreased all the way to zero to obtain sharp transitions (an
example of this is shown later in Fig. 4). This capability of
modeling the separation of a domain into regions or phases
with a controlled smoothness transition between them
makes the diffuse interface description attractive for seg-
mentation problems, and distinguishes it from more tradi-
tional graph-based spectral partitioning methods.

2.2.4 Semi-Supervised Learning on Graphs

In graph-based learning methods, the graph is con-
structed such that the edges represent the similarities in
the data set and the nodes have an associated real state
that encodes, with an appropriate thresholding opera-
tion, class membership.

In addition, in some data sets, the label of a small fraction
of data points is known beforehand. This considerably
improves the learning accuracy, explaining in part the pop-
ularity of semi-supervised learning methods. The graph
generalization of the diffuse interface model handles this
condition by using the labels of known points. The GL func-
tional for SSL is

E(u) = g (u, Lgu) + iZ(uf — 1)2
. 9% (12)

eV

The final term in the sum is the new fidelity term that enforces
label values that are known beforehand. y; is a parameter that
takes the value of a positive constant p if 4 is a fidelity node
and zero otherwise, and ; is the known value of fidelity node
4. This constitutes a soft assignment of fidelity points: these are
not fixed but allowed to change state.

Note that since GL does not guarantee searching in a
space orthogonal to the trivial minimum, alternative con-
straints could be introduced to obtain partitioning results
that do not depend on fidelity information (unsupervised).
For example, a mass-balance constraint, v L 1, has been
used in [4] to insure solutions orthogonal to the trivial
minimum.

2.3 MBO Scheme for Binary Classification

In [50], Merriman et al. propose alternating between the fol-
lowing two steps to approximate motion by mean curva-
ture, or motion in which normal velocity equals mean
curvature:

1. Diffusion. Let Ut = S(8t)u™ where S(8t) is the prop-
agator (by time 6t) of the standard heat equation:

ou
— = Au. 1
a7 = Au (13)

2. Thresholding. Let

urH—l — ]-,
71’

if "3 >0,
if utE < 0.
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This MBO scheme has been rigorously proven to
approximate motion by mean curvature by Barles and
Georgelin [2] and Evans [27] .

The algorithm is related to solving the basic (unmodified)
Allen-Cahn equation, namely equation (6) without the fidel-
ity term. If we consider a time-splitting scheme (details in
[26]) to evolve the equation, in the € — 0 limit, the second
step is simply thresholding [50]. Thus, as ¢ — 0, the time
splitting scheme above consists of alternating between
diffusion and thresholding steps (MBO scheme mentioned
above). In fact, it has been shown [53] that in the limit e — 0,
the rescaled solutions u.(z,t/¢) of the Allen-Cahn equation
yield motion by mean curvature of the interface between
the two phases of the solutions, which the MBO scheme
approximates.

The motion by mean curvature of the scheme can be
generalized to the case of functions on a graph in much
the same way as the procedure followed for the modified
Allen-Cahn equation (6) in [4]. Merkurjev et al. have pur-
sued this idea in [49], where a modified MBO scheme on
graphs has been applied to the case of binary segmenta-
tion. The motivation comes from [26] by Esedoglu and
Tsai, who propose threshold dynamics for the two-phase
piecewise constant Mumford-Shah functional. The authors
derive the scheme by applying a two-step time splitting
scheme to the gradient descent equation resulting from the
minimization of the MS functional, so that the second step
is the same as the one in the original MBO scheme. Mer-
kurjev et al. in [49] also apply a similar time splitting
scheme, but now to (6). The Au term is then replaced with
a more general graph term —Lsu. The discretized version
of the algorithm is:

1. Heat equation with forcing term:

1
,u,n+2 —ut

pra —Lau" — p(u" — ). (14)

2. Thresholding;:

n +%

n+1 17 if U; > 07
i - . n+i
-1, ifw ? <O0.

i

Here, after the second step, v} can take only two values of
1 or —1; thus, this method is appropriate for binary seg-
mentation. The fidelity term scaling can be different from
the one in (6).

The following section describes the modifications
introduced to generalize this functional to multiclass
segmentation.

3 MuLTICLASS DATA SEGMENTATION

The main point of this paper is to show how to extend prior
work to the multiclass case. This allows us to tackle a broad
class of machine learning problems.

We use the following notation in the multiclass case.
Given Np data points, we generalize the label vector u to a
label matrix U = (uy, ..., uND)T. Rather than node i adopt-
ing a single state u; € R, it now adopts a composition of
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states expressed by a vector u; € RX where the kth compo-
nent of u; is the strength with which it takes on class k. The
matrix U has dimensions Np x K, where K is the total
number of possible classes.

For each node ¢, we require the vector u; to be an element
of the Gibbs simplex 3, defined as

K= {(ml,...,xK) e [0,1)"

K
D ay = 1}. (15)
k=1

Vertex k of the simplex is given by the unit vector e;, whose
kth component equals 1 and all other components vanish.
These vertices correspond to pure phases, where the node
belongs exclusively to class k. The simplex formulation has a
probabilistic interpretation, with u; representing the proba-
bility distribution over the K classes. In other segmentation
algorithms, such as spectral clustering, these real-valued vari-
ables can have different interpretations that are exploited for
specific applications, as discussed in [38], [48].

3.1 Multiclass Ginzburg-Landau Approach
The multiclass GL energy functional for the phase field
approach on graphs is written as

K

E(U) = g (U,L,U) +2iz (Hi i — eklil)
(16)

icV \k=1

i A2
+Zgl [[w; — ",
eV

where

(U,L,U) = trace(UTLsU),

and 1; is a vector indicating prior class knowledge of sample 3.
We set 4; = e, if node 7 is known to be in class k.

The first (smoothing) term in the GL functional (16)
measures variations in the vector field. The simplex
representation has the advantage that, like in Potts-based
models but unlike in some other multiclass methods, the
penalty assigned to differently labeled neighbors is inde-
pendent of the integer ordering of the labels. The second
(potential) term drives the system closer to the vertices
of the simplex. For this term, we adopt an L; norm to
prevent the emergence of an undesirable minimum at
the center of the simplex, as would occur with an L
norm for large K. The third (fidelity) term enables the
encoding of a priori information.

Note that one can obtain meaningful results without
fidelity information (unsupervised), but the methods for
doing so are not as straightforward. One example is a
new TV-based modularity optimization method [41] that
makes no assumption as to the number of classes and
can be recast as GL minimization. Also, while I'-conver-
gence to TV in the graph setting has been proven for the
binary segmentation problem [5], no similar convergence
property has yet been proven for the multiclass case. We
leave this as an open conjecture.

Following [4], we use a convex splitting scheme to
minimize the GL functional in the phase field approach.
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The energy functional (16) is decomposed into convex
and concave parts:

E(U) = Econvex(U) + Econcave(U)a
C

€
Econvcx(U) = 5 <U’ LSU> + 5 <U7 U>7
T —trl 2
Econcave(U) = %Z HZ ||ul - ek”Ll
i€V k=1
i " c
+ EI ”ui*uiH%Q*§<U’U>’

eV

with C' € R denoting a constant that is chosen to guarantee
the convexity/concavity of the energy terms. Evaluating the
second derivative of the partitions, and simplifying terms,
yields:

02u+§ (17)

The convex splitting scheme results in an uncondi-
tionally stable time-discretization scheme using a gradi-
ent descent implicit in the convex partition and explicit
in the concave partition, as given by the form [26], [28],
[64]

8EC()11V(€X 8ECOH(TH.V€

o 4 dt P =UL - dt — 2 (Uh). (1
Utk + SULk (ULk ) Uzk SULk (ULk) ( 8)
We write this equation in matrix form as
Un+1 + dt<€LsUn+1 + CUn+1)
n 1 n n 2 n (19)
=U"—dt ZT +u(U"-U)-CU" |,
where
K G|
2
Tiy, = 25(1 —28u)w —ell, ] 2 i —enllz,
=1 m=1 (20)
m#1

@ is a diagonal matrix with elements y,, and U = ({,
L \T
ceey UNU) .
Solving (19) for U"*! gives the iteration equation

dt 0T
U =B [(1+Cd)U" — 3¢ ' —dtu(U" =U) |, (21)

where

B =(1+Cdt)I+edtL, (22)

This implicit scheme allows the evolution of U to be numeri-
cally stable regardless of the time step dt, in spite of the numer-
ical "stiffness" of the underlying differential equations which
could otherwise force dt to be impractically small.

In general, after the update, the phase field is no longer
on the 3 simplex. Consequently, we use the procedure in
[15] to project back to the simplex.

Computationally, the scheme’s numerical efficiency is
increased by using a low-dimensional subspace spanned by
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Require: ¢, dt,ND,Ne,K,u,fI,A,X
Ensure: out = Uend
C+pu+ %
Y « [(1+Cdt)I+edtA] ' XT
for i =1— Np do
U,p « rand((0,1)), US, « projectToSimplex(u;°).
If ;> 0, U2« U
end for
n+1
while Stop criterion not satisfied do
fori=1— Np,k=1— K do
Tyt 4= ity 5 (1= 20) 0™ = eall, Tlmy s 3
Ju™ — enll3,
end for
ZoY [(1+0dt)U"— e gt (U — )
Ut « X7Z
for i=1— Np do
u," !+ projectToSimplex(u;" 1)
end for
n+<n+1
end while

Fig. 1. Multiclass GL algorithm.

only a small number of eigenfunctions. Let X be the matrix
of eigenvectors of L, and A be the diagonal matrix of corre-
sponding eigenvalues. We now write L; as its eigendecom-
position Ly = XAXT, and set

B =X[(1+Cdt)I +edt A)XT, (23)
but we approximate X by a truncated matrix retaining only N,
eigenvectors (N, < Np), to form a matrix of dimension
Np X N,. The term in brackets is simply a diagonal N, x N,
matrix. This allows B to be calculated rapidly, but more
importantly it allows the update step (21) to be decomposed
into two significantly faster matrix multiplications (as dis-
cussed below), while sacrificing little accuracy in practice.

For initialization, the phase compositions of the fidelity
points are set to the vertices of the simplex corresponding to
the known labels, while the phase compositions of the rest
of the points are set randomly.

The energy minimization proceeds until a steady state
condition is reached. The final classes are obtained by
assigning class k to node ¢ if u; is closest to vertex e, on the
Gibbs simplex. Consequently, the calculation is stopped
when

max; Hu7_71+1 _ ujn”2

- < n, 24
max; [P 7 24

where n represents a given small positive constant.

The algorithm is outlined in Fig. 1. While other operator
splitting methods have been studied for minimization prob-
lems (e.g., [47]), ours has the following advantages: (i) it is
direct (i.e., it does not require the solution of further
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minimization problems), (ii) the resolution can be adjusted
by increasing the number of eigenvectors N, used in the
representation of the phase field, and (iii) it has low complex-
ity. To see this final point, observe that each iteration of the
multiclass GL algorithm has only O(NpKN.) operations for
the main loop, since matrix Z in Fig. 1 only has dimensions
N, x K, and then O(Np K log K) operations for the projec-
tion to the simplex. Usually, N, < Np and K < Np, so the
dominant factor is simply the size of the data set Np. In addi-
tion, it is generally the case that the number of iterations
required for convergence is moderate (around 50 iterations).
Thus, practically speaking, the complexity of the algorithm
is linear.

3.2 Multiclass MBO Reduction
Using the standard Gibbs-simplex 3, the multiclass
extension of the algorithm in [49] is straightforward. The
notation is the same as in the beginning of the section.
While the first step of the algorithm remains the same
(except, of course, it is now in matrix form), the second
step of the algorithm is modified so that the thresholding
is converted to the displacement of the vector field vari-
able towards the closest vertex in the Gibbs simplex. In
other words, the row vector u;"*? of step 1 is projected
back to the simplex (using the approach outlined in [15] as
before) and then a pure phase given by the vertex in the
3% simplex closest to u," s assigned to be the new phase
composition of node «.

In summary, the new algorithm consists of alternating
between the following two steps to obtain approximate sol-
utions U" at discrete times:

1. Heat equation with forcing term:

U?Hrl . .
;71& — _L,U" - u(U" - 1) (25)
2. Thresholding:
"t = e, (26)

where vertex ey, is the vertex in the simplex closest to

projectToSimplex(u;"*?).
As with the multiclass GL algorithm, when a label is known, it
is represented by the corresponding vertex in the sk simplex.
The final classification is achieved by assigning node i to class
k if if the kth component of u; is one. Again, as in the binary
case, the diffusion step can be repeated a number of times
before thresholding and when that happens, dt is divided by
the number of diffusion iterations Ng.

As in the previous section, we use an implicit numerical
scheme. For the MBO algorithm, the procedure involves
modifying (25) to apply L, to U"'2 instead of to U". This
gives the diffusion step

UTH»% _ B71 [Un —dt [L(Un _

U)], (27)

where

B=1+dtL,
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Require: dt, Np, N, Ng, K, pu, U, A, X
Ensure: out = Uend °
Y (I+f5A) X7
fori=1— ND do
U,p + rand((0,1)), w;° « projectToSimplex(u,).
If 41; >0, U2 + U,P
end for
n+1
while Stop criterion not satisfied do
for s =1— Ng do
ZY [U”fN—Su(U”ffJ)}
Ut « X7Z
end for
fori=1— Np do
w;" ! < projectToSimplex(u;" 1)
"*1 + ey, where k is closest simplex vertex to u;"*!
end for
n<n+1l
end while

Fig. 2. Multiclass MBO algorithm.

As before, we use the eigendecomposition L, = XAXT to
write

B =X(I+dtA)X" (29)

which we approximate using the first N, eigenfunctions. The
initialization procedure and the stopping criterion are the
same as in the previous section.

The multiclass MBO algorithm is summarized in Fig. 2.
Its complexity is O(NpKN.Ng) operations for the main
loop, O(NpK log K) operations for the projection to the sim-
plex and O(NpK) operations for thresholding. As in the
multiclass GL algorithm, N. < Np and K < Np. Further-
more, Ng needs to be set to three, and due to the threshold-
ing step, we find that extremely few iterations (e.g., 6) are
needed to reach steady state. Thus, in practice, the complex-
ity of this algorithm is linear as well, and typical runtimes
are very rapid as shown in Table 3.

Note that graph analogues of continuum operators,
such as gradient and Laplacian, can be constructed using
tools of nonlocal discrete calculus. Hence, it is possible to
express notions of graph curvature for arbitrary graphs,
even with no geometric embedding, but this is not straight-
forward. For a more detailed discussion about the MBO
scheme and motion by mean curvature on graphs, we refer
the reader to [59].

4 EXPERIMENTAL RESULTS

We have tested our algorithms on synthetic data, image
labeling, and the MNIST, COIL and WebKB benchmark
data sets. In most of these cases, we compute the symmet-
ric normalized graph Laplacian matrix L,, of expression
(9), using N-neighborhood graphs: in other words, verti-
ces ¢ and j are connected only if 7 is among the N nearest
neighbors of j or if j is among the N nearest neighbors of
i. Otherwise, we set w(7,j) = 0. This results in a sparse
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TABLE 1
Results for Benchmark Data Sets: Moons, MNIST, COIL and WebKB
MNIST
Method Accuracy
Two/Three moons p-Laplacian [11] 87.1%
multicut normalized 1-cut [40] 87.64%
Method Accuracy linear classifiers [45], [46] 88%
spectral clustering [31] 80% Cheeger cuts [57] 88.2%
p-Laplacian [11] 94% boosted stumps [43], [46] 92.3-98.74%
Cheeger cuts [57] 95.4% transductive classification [58] 92.6%
tree GL [31] 97.4% tree GL [31] 93.0%
binary GL [4] 97.7% k-nearest neighbors [45], [46] 95.0-97.17%
multiclass GL 98.1% neural/convolutional nets [17], [45], [46] | 95.3-99.65%
multiclass MBO 99.12% nonlinear classifiers [45], [46] 96.4-96.7%
multiclass GL 96.8%
multiclass MBO 96.91%
SVM [21], [45] 98.6-99.32%
COIL WebKB
Method Accuracy Method Accuracy
k-nearest neighbors [56] 83.5% vector method [12] 64.47%
LapRLS [3], [56] 87.8% k-nearest neighbors (k = 10) [12] 72.56%
sGT [42], [56] 89.9% centroid (normalized sum) [12] 82.66%
SQ-Loss-I [56] 90.9% naive Bayes [12] 83.52%
MP [56] 91.1% SVM (linear kernel) [12] 85.82%
multiclass GL 91.2% multiclass GL 87.2%
multiclass MBO 91.46% multiclass MBO 88.48%
TABLE 2
WebKB Results with Varying Fidelity Percentage
Method 10% 15% 20% 25% 30%
WebKB results for Multiclass GL (% correct) 81.3% 84.3% 85.8% 86.7% 87.2%
WebKB results for Multiclass MBO (% correct) 83.71% | 85.75% | 86.81% | 87.74% | 88.48%
TABLE 3
Comparison of Timings (in Seconds)
Data set three moons | color images | MNIST | COIL | WebKB
Size 15K 144 K 70 K 15K 42 K
Graph Calculation 0.771 0.52 6183.1 0.95 399.35
Eigenvector Calculation 0.331 27.7 1683.5 0.19 64.78
Multiclass GL 0.016 837.1 153.1 0.035 0.49
Multiclass MBO 0.013 40.0 15.4 0.03 0.05
TABLE 4
Comparison of Number of lterations
Data set three moons | color images | MNIST | COIL | WebKB
Multiclass GL 15 770 90 12 20
Multiclass MBO 3 44 7 6 7

matrix, making calculations and algorithms more tracta-
ble. In addition, for the similarity function we use the
local scaling weight function of Zelnik-Manor and Perona

[65], defined as
d(i, j)* >
(i)z(5) )

where d(i, j) is some distance measure between vertices i and j,
such as the Lo distance, and +/7(i) = d(i, k) defines a local

w(i, j) = exp (— (30)

value for each vertex i, parametrized by M, with k being the
index of the Mth closest vertex to 4.

With the exception of the image labeling example, all the
results and comparisons with other published methods are
summarized in Tables 1 and 2. Due to the arbitrary selection
of the fidelity points, our reported values correspond to
averages obtained over 10 runs with different random selec-
tions. The timing results and number of iterations of the
two methods are shown in Tables 3 and 4, respectively. The
methods are labeled as “multiclass GL” and “multiclass
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Fig. 3. Segmentation of three moons using multiclass MBO
(98.4667 percent correct).

MBO”. These comparisons show that our methods exhibit a
performance that is competitive with or better than the cur-
rent state-of-the-art segmentation algorithms.

Parameters are chosen to produce comparable perfor-
mance between the methods. For the multiclass GL method,
the convexity constant used is: C'=u +21 As described
before in expression (17), this is the lower limit that guaran-
tees the convexity and concavity of the terms in the energy
partition of the convex splitting strategy employed. For the
multiclass MBO method, as discussed in the previous sec-
tion, the diffusion step can be repeated a number of times
before thresholding. In all of our results, we run the diffu-
sion step three times before any thresholding is done
(Ng = 3).

To compute the eigenvectors and eigenvalues of the sym-
metric graph Laplacian, we use fast numerical solvers. As
we only need to calculate a portion of the eigenvectors to
get good results, we compute the eigendecompositions
using the Rayleigh-Chebyshev procedure of [1] in all cases
except the image labeling example. This numerical solver is
especially efficient for producing a few of the smallest
eigenvectors of a sparse symmetric matrix. For example, for
the MNIST data set of 70,000 images, it was only necessary
to calculate 300 eigenvectors, which is less than 0.5 percent
of the data set size. This is one of the factors that makes our
methods very efficient. For the image labeling experiments,
we use the Nystrom extension method described in [4], [29],
[30]. The advantage of the latter method is that it can be effi-
ciently used for very large datasets, because it appoximates
the eigenvalues and eigenvectors of a large matrix by calcu-
lations done on much smaller matrices formed by randomly
chosen parts of the original matrix.

4.1 Synthetic Data
The synthetic data set we tested our method against is the
three moons data set. It is constructed by generating three
half circles in R?. The two half top circles are unit circles
with centers at (0,0) and (3,0). The bottom half circle has
radius 1.5 and the center at (1.5,0.4). Five hundred points
from each of those three half circles are sampled and
embedded in R'" by adding Gaussian noise with standard
deviation of 0.14 to each of the 100 components of each
embedded point. The dimensionality of the data set,
together with the noise, makes segmentation a significant
challenge.

The weight matrix of the graph edges was calculated
using N = 10 nearest neighbors and local scaling based on
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(a) e =2.5

b e=1

Fig. 4. Three-moons segmentation. Left: ¢ = 2.5 (81.8 percent correct).
Right: e = 1 (97.1 percent correct).

the 17th closest point (M = 17). The fidelity term was con-
structed by labeling 25 points per class, 75 points in total,
corresponding to only 5 percent of the points in the data set.

The multiclass GL method used the following parame-
ters: 15 eigenvectors, e =1, dt = 0.1, u = 30, n = 10~7. The
method was able to produce an average of 98.1 percent of
correct classification, with a corresponding computation
time of 0.016 s per run on a 2.4 GHz Intel Core i2 Quad
without any parallel processing.

Analogously, the multiclass MBO method used the fol-
lowing parameters: 20 eigenvectors, dt =0.1, p =30,
n = 10~". It was able to segment an average of 99.12 percent
of the points correctly over 10 runs with only three itera-
tions and about 0.01 s of computation time. One of the
results obtained is shown in Fig. 3.

Table 1 gives published results from other related meth-
ods, for comparison. Note that the results for p-Laplacians
[11], Cheeger cuts [57] and binary GL are for the simpler
binary problem of two moons (also embedded in R!%).
While, strictly speaking, these are unsupervised methods,
they all incorporate prior knowledge such as a mass bal-
ance constraint. We therefore consider them comparable
to our SSL approach. The “tree GL” method [31] uses a
scalar multiclass GL approach with a tree metric. It can be
seen that our methods achieve the highest accuracy on
this test problem.

The parameter e determines a scale for the diffuse inter-
face and therefore has consequences in the minimization of
the GL energy functional, as discussed in Section 2.2.
Smaller values of ¢ define a smaller length for the diffuse
interface, and at the same time, increasing the relative
weight of the potential term with respect to the smoothing
term. Therefore, as the parameter € decreases, sharp transi-
tions are generated which in general constitute more accu-
rate classifications. Fig. 4 compares the performance for two
different values of e. Note that the GL results for large € are
roughly comparable to those given by a standard spectral
clustering approach [31].

4.2 Co-Segmentation

We tested our algorithms on the task of co-segmentation. In
this task, two images with a similar topic are used. On one
of the images, several regions are labeled. The image label-
ing task looks for a procedure to transfer the knowledge
about regions, specified by the labeled segmentation, onto
the unlabeled image. Thus, the limited knowledge about
what defines a region is used to segment similar images
without the need for further labelings.
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(b) Labeled Data

(a) Original Image

Fig. 5. Labeled color image.

On the color image of cows, shown in Fig. 5a, some
parts of the sky, grass, black cow and red cow have been
labeled, as shown in Fig. 5b. This is a 319 x 239 color
image. The image to be segmented is a 319 x 213 color
image shown in Fig. 6a. The objective is to identify in this
second image regions that are similar to the components
in the labeled image.

To construct the weight matrix, we use feature vectors
defined as the set of intensity values in the neighborhood
of a pixel. The neighborhood is a patch of size 5 x 5. Red,
green and blue channels are appended, resulting in a fea-
ture vector of dimension 75. A Gaussian similarity graph,
as described in equation (7), is constructed with o = 22
for both algorithms. Note that for both the labeled and
the unlabeled image, nodes that represent similar patches
are connected by high-weighted edges, independent of
their position within the image. The transfer of informa-
tion is then enabled through the resulting graph, illustrat-
ing the nonlocal characteristics of this unembedded
graph-based method.

The eigendecomposition of the Laplacian matrix is
approximated using the Nystrom method. This involves
selecting 250 points randomly to generate a submatrix,
whose eigendecomposition is used in combination with
matrix completion techniques to generate the approxi-
mate eigenvalues for the complete set. Details of the
Nystrom method are given elsewhere [4], [29], [30]. This
approximation drastically reduces the computation time,
as seen in Table 3.

(a) Image to Segment

(b) Multiclass GL

(c) Multiclass MBO

Fig. 6. Resulting color image segmentation.
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Fig. 7. Examples of digits from the MNIST database.

The multiclass Ginzburg-Landau method used the fol-
lowing parameters: 200 eigenvectors, ¢ =1, dt =0.005,
w=>50and n=10"".

The multiclass MBO method used the following parame-
ters: 250 eigenvectors, dt = 0.005, u = 300, n = 1077,

One of the results of each of our two methods (using the
same fidelity set) is depicted in Fig. 6. It can be seen that
both methods are able to transfer the identity of all the clas-
ses, with slightly better results for mutliclass MBO. Most of
the mistakes made correspond to identifying some borders
of the red cow as part of the black cow. Multiclass GL also
has problems identifying parts of the grass.

4.3 MNIST Data

The MNIST data set [46] is composed of 70,000 28 x 28
images of handwritten digits 0 through 9. Examples of
entries can be found in Fig. 7. The task is to classify each of
the images into the corresponding digit. The images include
digits from 0 to 9; thus, this is a 10 class segmentation
problem.

To construct the weight matrix, we used N = 8 nearest
neighbors with local scaling based on the 8th closest neigh-
bor (M = 8). Note that we perform no preprocessing, i.e.,
the graph is constructed using the 28 x 28 images. For the
fidelity term, 250 images per class (2500 images correspond-
ing to 3.6 percent of the data) are chosen randomly.

The multiclass GL method used the following parame-
ters: 300 eigenvectors, e = 1, dt = 0.15, u =50 and n = 1077.
The set of 70,000 images was segmented with an average
accuracy (over 10 runs) of 96.8 percent of the digits classi-
fied correctly in an average time of 153 s.

The multiclass MBO method used the following parame-
ters: 300 eigenvectors, dt = 0.15, u = 50, n = 1077. The algo-
rithm segmented an average of 96.91 percent of the digits
correctly over 10 runs in only 4 iterations and 15.382 s. We
display the confusion matrix in Table 5. Note that most of
the mistakes were in distinguishing digits 4 and 9, and
digits 2 and 7.

Table 1 compares our results with those from other
methods in the literature. As with the three moon prob-
lem, some of these are based on unsupervised methods
but incorporate enough prior information that they can
fairly be compared with SSL methods. The methods of
linear/nonlinear classifers, k-nearest neighbors, boosted
stumps, neural and convolutional nets and SVM are all
supervised learning approaches, taking 60,000 of the dig-
its as a training set and 10,000 digits as a testing set [46],
in comparison to our SSL approaches where we take only
3.6 percent of the points for the fidelity term. Our algo-
rithms are nevertheless competitive with, and in most
cases outperform, these supervised methods. Moreover,
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TABLE 5
Confusion Matrix for MNIST Data Segmentation: MBO Scheme
Obtained/True 0 1 2 5 6 7 8 9
0 6844 | 20 41 3 15 21 1 20 17
1 5 7789 | 32 34 1 14 63 51 14
2 5 22 | 6731 | 42 2 4 1 23 19 8
3 0 3 20 | 6890 1 86 0 1 81 90
4 1 17 6 2 6625 3 7 12 28 67
5 9 3 70 0 6077 | 28 2 109 14
6 31 5 11 3 22 69 | 6800 0 29 5
7 2 16 117 44 12 9 0 7093 | 20 101
8 2 21 46 4 17 5 2 6398 | 22
9 8 33 121 32 0 96 70 | 6620

we perform no preprocessing or initial feature extraction
on the image data, unlike most of the other methods we
compare with (we exclude from the comparison the meth-
ods that deskewed the image). While there is a computa-
tional price to be paid in forming the graph when data
points use all 784 pixels as features (see graph calculation
time in Table 3), this is a one-time operation that concep-
tually simplifies our approach.

4.4 COIL Data Set

We evaluated our performance on the benchmark COIL
data set [14], [52]. This is a set of color 128 x 128 images of
100 objects, taken at different angles. The red channel of
each image was then downsampled to 16 x 16 pixels by
averaging over blocks of 8 x 8 pixels. Then 24 of the objects
were randomly selected and then partitioned into six clas-
ses. Discarding 38 images from each class leaves 250 per
class, giving a data set of 1, 500 data points.

To construct the weight matrix, we used N = 4 nearest
neighbors with local scaling based on the fourth closest
neighbor (A = 4). The fidelity term was constructed by
labeling 10 percent of the points, selected at random.

For multiclass GL, the parameters were: 35 eigenvectors,
e=1,dt =0.05 u=>50and n = 10~7. This resulted in 91.2
percent of the points classified correctly (average) in 0.035s.

For multiclass MBO, the parameters were: 50 eigenvec-
tors, dt = 0.2, © =100, n = 10~". We obtained an accuracy
of 91.46 percent, averaged over 10 runs. The procedure took
6 iterations and 0.03 s.

Comparative results reported in [56] are shown in
Table 1. These are all SSL methods (with the exception of
k-nearest neighbors which is supervised), using 10 percent
fidelity just as we do. Our results are of comparable or
greater accuracy.

4.5 WebKB Data Set
Finally, we tested our methods on the task of text classifica-
tion on the WebKB data set [20]. This is a collection of web-
pages from Cornell, Texas, Washington and Wisconsin
universities, as well as other miscellaneous pages from
other universities. The webpages are to be divided into four
classes: project, course, faculty and student. The data set is
preprocessed as described in [12].

To construct the weight matrix, we used 575 nearest
neighbors. Tfidf term weighting [12] is used to represent the

website feature vectors. They were then normalized to uni-
tary length. The weight matrix points are calculated using
cosine similarity.

For the multiclass GL, the parameters were: 250 eigen-
vectors, e=1, dt =1, 4 =50 and n=10"7. The average
accuracies obtained for fidelity sets of different sizes are
given in Table 2. The average computation time was 0.49 s.

For the multiclass MBO, the parameters were: 250 eigen-
vectors, dt =1, w =4, n=10""7. The average accuracies
obtained for fidelity sets of different sizes are given in
Table 2. The procedure took an average of 0.05 s and seven
iterations.

We compare our results with those of several supervised
learning methods reported in [12], shown in Table 1. For
these methods, two-thirds of the data were used for train-
ing, and one third for testing. Our SSL methods obtain
higher accuracy, using only 20 percent fidelity (for multi-
class MBO). Note that a larger sample of points for the fidel-
ity term reduces the error in the results, as shown in
Table 2. Nevertheless, the accuracy is high even for the
smallest fidelity sets. Therefore, the methods appear quite
adequate for the SSL setting where only a few labeled data
points are known beforehand.

Multiclass GL and MBO: All the results reported point
out that both multiclass GL and multiclass MBO perform
well in terms of data segmentation accuracy. While the
ability to tune multiclass GL can be an advantage, multi-
class MBO is simpler and, in our examples, displays even
better performance in terms of its greater accuracy and
the fewer number of iterations required. Note that even
though multiclass GL leads to the minimization of a non-
convex function, in practice the results are comparable
with other convex TV-based graph methods such as [9].
Exploring the underlying connections of the energy evo-
lution of these methods and the energy landscape for the
relaxed Cheeger cut minimization recently established in
[8] are to be explored in future work.

5 CONCLUSIONS

We have presented two graph-based algorithms for multi-
class classification of high-dimensional data. The two
algorithms are based on the diffuse interface model using
the Ginzburg-Landau functional, and the multiclass
extension is obtained using the Gibbs simplex. The first
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algorithm minimizes the functional using gradient descent
and a convex-splitting scheme. The second algorithm exe-
cutes a simple scheme based on an adaptation of the clas-
sical numerical MBO method. It uses fewer parameters
than the first algorithm, and while this may in some cases
make it more restrictive, in our experiments it was highly
accurate and efficient.

Testing the algorithms on synthetic data, image label-
ing and benchmark data sets shows that the results are
competitive with or better than some of the most recent
and best published algorithms in the literature. In addi-
tion, our methods have several advantages. First, they
are simple and efficient, avoiding the need for intricate
function minimizations or heavy preprocessing of data.
Second, a relatively small proportion of fidelity points is
needed for producing an accurate result. For most of our
data sets, we used at most 10 percent of the data points
for the fidelity term; for synthetic data and the two
images, we used no more than 5 percent. Furthermore,
as long as the fidelity set contains samples of all classes
in the problem, a random initialization is enough to pro-
duce good multiclass segmentation results. Finally, our
methods do not use one-vs-all or sequences of binary
segmentations that are needed for some other multiclass
methods. We therefore avoid the bias and extra process-
ing that is often inherent in those methods.

Our algorithms can take advantage of the sparsity of the
neighborhood graphs generated by the local scaling proce-
dure of Zelnik-Manor and Perona [65]. A further reason for
the strong practical performance of our methods is that the
minimization equations use only the graph Laplacian, and
do not contain divergences or any other first-order deriva-
tive terms. This allows us to use rapid numerical methods.
The Laplacian can easily be inverted by projecting onto its
eigenfunctions, and in practice, we only need to keep a
small number of these. Techniques such as the fast numeri-
cal Rayleigh-Chebyshev method of Anderson [1] are very
efficient for finding the small subset of eigenvalues and
eigenvectors needed. In certain cases, we obtain additional
savings in processing times by approximating the eigende-
composition of the Laplacian matrix through the Nystrom
method [4], [29], [30], which is effective even for very large
matrices: we need only compute a small fraction of the
weights in the graph, enabling the approximation of the
eigendecomposition of a fully connected weight matrix
using computations on much smaller matrices.

Thus, there is a significant computational benefit in not
having to calculate any first-order differential operators.
In view of this, we have found that for general graph prob-
lems, even though GL requires minimizing a non-convex
functional, the results are comparable in accuracy to con-
vex TV-based graph methods such as [9]. For MBO, the
results are similarly accurate, with the further advantage
that the algorithm is very rapid. We note that for other
problems such as in image processing that are suited to a
continuum treatment, convex methods and maxflow-type
algorithms are in many cases the best approach [13], [62].
It would be very interesting to try to extend our gradient-
free numerical approach to graph-based methods that
directly use convex minimization, such as the method
described in [63].
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Finally, comparatively speaking, multiclass MBO per-
formed better than multiclass GL in terms of accuracy and
convergence time for all of the data sets we have studied.
Nevertheless, we anticipate that more intricate geometries
could impair its effectiveness. In those cases, multiclass GL
might still perform well, due to the additional control pro-
vided by tuning e to increase the thickness of the interfaces,
producing smoother decision functions.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers for their com-
ments and suggestions, which helped to improve the
quality and readability of the manuscript. In addition,
the authors would like to thank Chris Anderson for pro-
viding the code for the Rayleigh-Chebyshev procedure
of [1]. This work was supported by ONR Grants
NO000141210838,  N000141210040, N0001413WX20136,
AFOSR MURI Grant FA9550-10-1-0569, the US National
Science Foundation (NSF) Grants DMS-1118971 and
DMS-0914856, the US Department of Energy (DOE)
Office of Science’s ASCR program in Applied Mathemat-
ics, and the W.M. Keck Foundation. Ekaterina Merkurjev
is also supported by an NSF graduate fellowship.

REFERENCES

[11 C. Anderson, “A Rayleigh-Chebyshev Procedure for Finding the
Smallest Eigenvalues and Associated Eigenvectors of Large
Sparse Hermitian Matrices,” |. Computational Physics, vol. 229,
pp. 7477-7487, 2010.

[2] G. Barles and C. Georgelin, “A Simple Proof of Convergence for
an Approximation Scheme for Computing Motions by Mean
Curvature,” SIAM ]. Numerical Analysis, vol. 32, no. 2, pp. 484-500,
1995.

[3] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold Regulariza-
tion: A Geometric Framework for Learning from Labeled and
Unlabeled Examples,” The |. Machine Learning Research, vol. 7,
pp- 2399-2434, 2006.

[4] A. Bertozzi and A. Flenner, “Diffuse Interface Models on Graphs
for Classification of High Dimensional Data,” Multiscale Modeling
& Simulation, vol. 10, no. 3, pp. 1090-1118, 2012.

[5] A. Bertozzi and Y. van Gennip, “I'-Convergence of Graph Ginz-
burg-Landau Functionals,” Advances in Differential Equations,
vol. 17, no. 11/12, pp. 1115-1180, 2012.

[6] A. Bertozzi, S. Esedoglu, and A. Gillette, “Inpainting of Binary
Images Using the Cahn-Hilliard Equation,” IEEE Trans. Image
Processing, vol. 16, no. 1, pp. 285-291, Jan. 2007.

[7] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[8] X. Bresson, T. Laurent, D. Uminsky, and J.H. von Brecht,
“Convergence and Energy Landscape for Cheeger Cut
Clustering,” Proc. Advances in Neural Information Processing Sys-
tems, 2012.

[9] X. Bresson, T. Laurent, D. Uminsky, and J.H. von Brecht,
“Multiclass Total Variation Clustering,” http://arxiv.org/abs/
1306.1185, 2013.

[10] X. Bresson, X.-C. Tai, T.F. Chan, and A. Szlam, “Multi-Class
Transductive Learning Based on (' Relaxations of Cheeger
Cut and Mumford-Shah-Potts Model,” UCLA CAM Report 12-
03, 2012.

[11] T. Buihler and M. Hein, “Spectral Clustering Based on the Graph
p-Laplacian,” Proc. 26th Ann. Int’l Conf. Machine Learning, pp. 81-
88, 2009.

[12] A. Cardoso, “Datasets for Single-Label Text Categorization,”
http://www.ist.utl.pt/~acardoso/datasets/, 2014.

[13] A. Chambolle, D. Cremers, and T. Pock, “A Convex Approach to
Minimal Partitions,” SIAM |. Imaging Sciences, vol. 5, no. 4,
pp- 1113-1158, 2012.



1612

[14]

[15]

[16]
[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.36, NO.8, AUGUST 2014

Semi-Supervised Learning, O. Chapelle, B. Scholkopf, and A. Zien,
eds.,, MIT Press, http://www.kyb.tuebingen.mpg.de/ssl-book,
2006.

Y. Chen, and X. Ye, “Projection onto a Simplex,” arXiv preprint
arXiv:1101.6081, 2011.

F. Chung, Spectral Graph Theory, vol. 92, Am Math. Soc., 1997.

D. Ciresan, U. Meier, J. Masci, L. Gambardella, and J. Schmid-
huber, “Flexible, High Performance Convolutional Neural Net-
works for Image Classification,” Proc. 22nd Int’l Joint Conf.
Artificial Intelligence, vol. 2, pp. 1237-1242, 2011.

C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power Water-
shed: A Unifying Graph-Based Optimization Framework,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 7,
pp- 1384-1399, July 2011.

C. Couprie, L. Grady, H. Talbot, and L. Najman, “Combinatorial
Continuous Maximum Flow,” SIAM |. Imaging Sciences, vol. 4,
no. 3, pp- 905-930, 2011.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K.
Nigam, and S. Slattery, “Learning to Extract Symbolic Knowledge
from the World Wide Web,” Proc. 15th Nat'l Conf. Artificial Intelli-
gence (AAAI-98), http:/ /www.cs.cmu.edu/~webkb, pp. 509-516,
1998.

D. Decoste and B. Scholkopf, “Training Invariant Support Vector
Machines,” Machine Learning, vol. 46, no. 1, pp. 161-190, 2002.

T. Dietterich, and G. Bakiri, “Solving Multiclass Learning Prob-
lems via Error-Correcting Output Codes,” arXiv preprint cs/
9501101, 1995.

J.A. Dobrosotskaya and A.L. Bertozzi, “A Wavelet-Laplace Varia-
tional Technique for Image Deconvolution and Inpainting,” IEEE
Trans. Image Processing, vol. 17, no. 5, pp. 657-663, May 2008.

J.A. Dobrosotskaya and A.L. Bertozzi, “Wavelet Analogue of the
Ginzburg-Landau Energy and Its I'-Convergence,” Interfaces and
Free Boundaries, vol. 12, no. 2, pp. 497-525, 2010.

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal Discrete
Regularization on Weighted Graphs: A Framework for Image and
Manifold Processing,” IEEE Trans. Image Processing, vol. 17, no. 7,
pp- 1047-1060, July 2008.

S.Esedoglu, Y. Tsai, “Threshold Dynamics for the Piecewise Con-
stant Mumford-Shah Functional,” ]. Computational Physics,
vol. 211, no. 1, pp. 367-384, 2006.

L.C. Evans, “Convergence of an Algorithm for Mean Curvature
Motion,” Indiana Univ. Math. ]., vol. 42, no. 2, pp. 533-557, 1993.
D.J. Eyre, “An Unconditionally Stable One-Step Scheme for Gradi-
ent Systems,”  http://www.math.utah.edu/~eyre/research/
methods/papers.html, 1998..

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral Group-
ing Using the Nystrom Method,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 214-225, Feb. 2004.

C. Fowlkes, S. Belongie, and J. Malik, “Efficient Spatiotemporal
Grouping Using the Nystrom Method,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 231-238, 2001.

C. Garcia-Cardona, A. Flenner, and A.G. Percus, “Multiclass Dif-
fuse Interface Models for Semi-Supervised Learning on Graphs,”
Proc. Second Int’l Conf. Pattern Recognition Applications and Methods,
2013.

H. Garcke, B. Nestler, B. Stinner, and F. Wendler, “Allen-Cahn
Systems with Volume Constraints,” Math. Models and Methods in
Applied Sciences, vol. 18, no. 8, pp. 1347-1381, 2008.

G. Gilboa and S. Osher, “Nonlocal Operators with Applications to
Image Processing,” Multiscale Modeling & Simulation, vol. 7, no. 3,
pp- 1005-1028, 2008.

T. Goldstein and S. Osher, “The Split Bregman Method for
Ly-Regularized Problems,” SIAM ]. Imaging Sciences, vol. 2, no. 2,
pp. 323-343, 2009.

L. Grady and J.R. Polimeni, Discrete Calculus: Applied Analysis on
Graphs for Computational Science. Springer, 2010.

L. Grady, “Multilabel Random Walker Image Segmentation Using
Prior Models,” Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition (CVPR), vol. 1, pp. 763-770, 2005.

L. Grady, “Random Walks for Image Segmentation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768-
1783, Nov. 2006.

L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random
Walks for Interactive Alpha-Matting,” Proc. Fifth IASTED Int’l
Conf. Visualization, Imaging and Image Processing (VIIP), 2005.

T. Hastie and R. Tibshirani, “Classification by Pairwise
Coupling,” The Annals of Statistics, vol. 26, no. 2, pp. 451-471, 1998.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

M. Hein and S. Setzer, “Beyond Spectral Clustering—Tight Relax-
ations of Balanced Graph Cuts,” Proc. Advances in Neural Informa-
tion Processing Systems 24, pp. 2366-2374, 2011.

H. Hu, T. Laurent, M.A. Porter, and A.L. Bertozzi, “A Method
Based on Total Variation for Network Modularity Optimization
Using the MBO Scheme,” SIAM ]. Applied Math., vol. 73, no. 6,
Pp- 2224-2246, http:/ /arxiv.org/abs/1304.4679, 2013.

T. Joachims et al., “Transductive Learning via Spectral Graph Par-
titioning,” Proc. Int’l Conf. Machine Learning, vol. 20, no. 1, 2003.

B. Kégl and R. Busa Fekete, “Boosting Products of Base Classifiers,”
Proc. 26th Ann. Int’l Conf. Machine Learning, pp. 497-504, 2009.

R. Kohn and P. Sternberg, “Local Minimizers and Singular
Perturbations,” Proc. Royal Soc. Edinburgh Section A, vol. 111,
no. 1/2, pp. 69-84, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

Y. LeCun, and C. Cortes, “The MNIST Database of Handwritten
Digits,” http:/ /yann.lecun.com/exdb/mnist/, 2014.

J. Lellmann, J.H. Kappes, J. Yuan, F. Becker, and C. Schnorr,
“Convex Multi-Class Image Labeling by Simplex-Constrained
Total Variation,”technical report IWR Univ. of Heidelberg,
http://www.ub.uni-heidelberg.de/archiv/8759/, Oct. 2008.

A. Levin, A. Rav-Acha, and D. Lischinski, “Spectral Matting,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30,
no. 10, pp. 1699-1712, Oct. 2008.

E. Merkurjev, T. Kostic, and A.L. Bertozzi, “An MBO Scheme on
Graphs for Classification and Image Processing,” SIAM |. Imaging
Sciences, vol. 6, no. 4, pp. 1903-1930, 2013.

B. Merriman, ].K. Bence, and S.J. Osher, “Motion of Multiple Junc-
tions: A Level Set Approach,” . Computational Physics, vol. 112,
no. 2, pp. 334-363, http://dx.doi.org/10.1006/jcph.1994.1105,
1994.

B. Mohar, “The Laplacian Spectrum of Graphs,” Graph Theory,
Combinatorics, and Applications, vol. 2, pp. 871-898, 1991.

S. Nene, S. Nayar, and H. Murase, “Columbia Object Image
Library (COIL-100),” Technical Report CUCS-006-96 Columbia
Univ., http://www.cs.columbia.edu/CAVE/software/softlib/
coil-100.php, 1996.

J. Rubinstein, P. Sternberg, and J. Keller, “A Simple Proof of Con-
vergence for an Approximation Scheme for Computing Motions
by Mean Curvature,” SIAM |. Applied Math., vol. 49, no. 1, pp. 116-
133, 1989.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp- 888-905, Aug. 2000.

B. Simons, Phase Transitions and Collective Phenomena, http://
www.tcm.phy.cam.ac.uk/ bds10/phase.html, Univ. of Cam-
bridge, 1997.

A. Subramanya and J. Bilmes, “Semi-Supervised Learning with
Measure Propagation,” J. Machine Learning Research, vol. 12,
pp- 3311-3370, 2011.

A. Szlam and X. Bresson, “Total Variation and Cheeger Cuts,”
Proc. 27th Int’l Conf. Machine Learning, pp. 1039-1046, 2010.

A.D. Szlam, M. Maggioni, and R.R. Coifman, “Regularization on
Graphs with Function-Adapted Diffusion Processes,” J. Machine
Learning Research, vol. 9, pp. 1711-1739, 2008.

Y. van Gennip, N. Guillen, B. Osting, and A.L. Bertozzi, “Mean
Curvature, Threshold Dynamics, and Phase Field Theory on
Finite Graphs,” http://www.math.ucla.edu/~bertozzi/papers/
graph_curve.pdf, 2013.

U.Von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395-416, 2007.

J. Wang, T. Jebara, and S. Chang, “Graph Transduction via Alter-
nating Minimization,” Proc. 25th Int'l Conf. Machine learning,
pp- 1144-1151, 2008.

J. Yuan, E. Bae, and X.-C. Tai, “A Study on Continuous Max-Flow
and Min-Cut Approaches,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pp. 2217-2224, 2010.

J. Yuan, E. Bae, X.-C. Tai, and Y. Boykov, “A Fast Continuous
Max-Flow Approach to Potts Model,” Proc. European Conf. Com-
puter Vision (ECCV '10), pp. 379-392, 2010.

A.L. Yuille and A. Rangarajan, “The Concave-Convex Procedure
(CCCP),” Neural Computation, vol. 15, no. 4, pp. 915-936, 2003.

L. Zelnik-Manor and P. Perona, “Self-Tuning Spectral Clustering,”
Proc. Advances in Neural Information Processing Systems, vol. 17,
pp- 1601-1608, 2004.



GARCIA-CARDONA ET AL.: MULTICLASS DATA SEGMENTATION USING DIFFUSE INTERFACE METHODS ON GRAPHS

[66] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schélkopf,
“Learning with Local and Global Consistency,” Proc. Advances in
Neural Information Processing Systems 16, pp. 321-328, 2004.

D. Zhou and B. Scholkopf, “A Regularization Framework for
Learning from Graph Data,” Proc. ICML Workshop Statistical Rela-
tional Learning, 2004.

X. Zhu, “Semi-Supervised Learning Literature Survey,” Technical
Report 1530, Computer Science, Univ. of Wisconsin-Madison,
2005.

[67]

[68]

Cristina Garcia-Cardona received the bach-
elor's degree in electrical engineering from Uni-
versidad de Los Andes in Colombia and the
master’s degree in emergent computer sciences
from Universidad Central de Venezuela, and the
PhD degree in computational science from Clare-
mont Graduate University and San Diego State
University joint program, working under the
supervision of Prof. Allon Percus and Dr. Arjuna
Flenner. She is a postdoctoral fellow at Clare-
mont Graduate University. Her research interests
include energy minimization and graph algorithms.

Ekaterina Merkurjev received the bachelor's
and master's degrees in applied mathematics
from the University of California, Los Angeles
(UCLA), in 2010. She is a fourth year graduate
student at the Department of Mathematics,
UCLA. She is currently working toward the PhD
degree under the supervision of Prof. Andrea
Bertozzi. Her research interests include image
processing and segmentation.

Andrea L. Bertozzi received the BA, MA, and
PhD degrees in mathematics all from Princeton
University, New Jersey, in 1987, 1988, and 1991,
respectively. She was on the faculty of the Uni-
versity of Chicago, lllinois, from 1991 to 1995
and Duke University, Durham, North Carolina,
from 1995 to 2004. During 1995-1996, she was
the Maria Goeppert-Mayer distinguished scholar
at Argonne National Laboratory. Since 2003, she
has been with the University of California, Los
Angeles, as a professor of mathematics, and cur-
rently serves as the director of applied mathematics. In 2012, she was
appointed the Betsy Wood Knapp chair for Innovation and Creativity.
Her research interests include image inpainting, image segmentation,
cooperative control of robotic vehicles, swarming, and fluid interfaces,
and crime modeling. She is a fellow of both the Society for Industrial and
Applied Mathematics and the American Mathematical Society; she is a
member of the American Physical Society. She has served as a plenary/
distinguished lecturer for both SIAM and AMS and is an associate editor
for the SIAM journals Multiscale Modelling and Simulation and Mathe-
matical Analysis. She also serves on the editorial board of Interfaces
and Free Boundaries, Applied Mathematics Research Express, Nonline-
arity, Applied Mathematics Letters, Mathematical Models and Methods
in Applied Sciences, Journal of Nonlinear Science, Journal of Statistical
Physics, Communications in Mathematical Sciences, Nonlinear Analy-
sis: Real World Applications, and Advances in Differential Equations.
Her past honors include a Sloan Foundation Research Fellowship, the
Presidential Career Award for Scientists and Engineers, and the SIAM
Kovalevsky Prize in 2009.

1613

Arjuna Flenner received the PhD degree in
physics from the University of Missouri-Columbia
in 2004. His major emphasis was mathematical
physics. His research interests at the Naval Air
Weapons Centre at China Lake include image
processing, machine learning, statistical pattern
recognition, and computer vision. In particular,
he has investigated automated image under-
standing algorithms for advanced naval capabili-
ties. His main research interests include nonlocal
operators, geometric diffusion, graph theory,
non-parametric Bayesian analysis, and a-contrario hypothesis testing
methods. He was a recipient of the US Department of Energy (DOE)
GAANN Fellowship in 1997-2001, and currently is also a visiting
research professor at Claremont Graduate University.

Allon G. Percus received the BA degree in phys-
ics from Harvard University in 1992 and the PhD
degree from the Université Paris-Sud, Orsay, in
1997. He was a member of the scientific staff at
Los Alamos National Laboratory in the Division of
Computer and Computational Sciences, and from
2003 to 2006 he served as associate director of
the Institute for Pure and Applied Mathematics at
the University of California, Los Angeles UCLA.
Since 2009, he has been an associate professor
of mathematics at Claremont Graduate Univer-
sity. His research interests combine discrete optimization, combinatorics
and statistical physics, exploiting physical models and techniques to
study the performance of algorithms on NP-hard problems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


