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Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods
for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely
associated with random walks on graphs. We propose a spectral partitioning method that exploits the properties
of epidemic diffusion. An epidemic is a dynamic process that, unlike the random walk, simultaneously transitions
to all the neighbors of a given node. We show that the replicator, an operator describing epidemic diffusion, is
equivalent to the symmetric normalized Laplacian of a reweighted graph with edges reweighted by the eigenvector
centralities of their incident nodes. Thus, more weight is given to edges connecting more central nodes. We
describe a method that partitions the nodes based on the componentwise ratio of the replicator’s second eigenvector
to the first and compare its performance to traditional spectral clustering techniques on synthetic graphs with
known community structure. We demonstrate that the replicator gives preference to dense, clique-like structures,
enabling it to more effectively discover communities that may be obscured by dense intercommunity linking.
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I. INTRODUCTION

Graph partitioning is used in many applications, including
community detection [1], image segmentation [2], and data
mining [3], where it is necessary to partition a graph into
modules or clusters of similar, or similarly behaving, nodes.
Spectral partitioning uses the eigenvectors associated with the
k smallest eigenvalues of the graph Laplacian matrix (or its
normalized version) to partition the graph into k clusters [4-7].

Existing methods for spectral partitioning are closely
associated with random walks on graphs. A random walk
is a stochastic dynamic process where transitions take place
from a node to a random neighbor of that node, and it is
described by the (normalized) graph Laplacian. The existence
of a good partition implies that random walks take a long
time to reach a stationary distribution on the graph [2,8],
because they spend a long time within a module and seldom
pass between modules [9]. This forms a basis for objective
functions used to select which edges to cut so as to partition the
graph, such as normalized cut and conductance, though these
functions have trouble partitioning real-world graphs where
many intermodule edges obscure the underlying structure [1].

Epidemic diffusion is another type of dynamic process on
a graph. An epidemic undergoes transitions simultaneously to
all the neighbors of a given node, rather than a single neighbor,
and is often used to model the spread of a virus or an innovation
through a social network [10,11]. Recently, Lerman and Ghosh
introduced the replicator matrix [12], an analog of the graph
Laplacian, to describe epidemic diffusion on graphs. They
used the replicator to simulate dynamics of synchronization in
a network of oscillators, showing that oscillators coupled via
epidemic diffusion synchronize into different structures than
oscillators coupled via random walk-like diffusion.

We propose a method for spectral graph partitioning based
on epidemic diffusion. First, we show that the replicator
is equivalent to the symmetric normalized Laplacian of a
reweighted graph, where new edge weights are the product
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of old edge weights and the eigenvector centralities of the two
end points. The eigenvector centrality [13] of a graph is given
by the eigenvector corresponding to the largest eigenvalue of
the adjacency matrix. Therefore, edges linking central nodes
are given a higher weight by the reweighting scheme.

The equivalence between the replicator and symmetric
normalized Laplacian of a reweighted graph allows us to
exploit well-known relationships between spectral clustering
and graph partitioning. To use the replicator for spectral
partitioning, we give a computationally efficient procedure that
orders nodes based on the componentwise ratio of the second
to first eigenvectors and selects a partition that minimizes a
quality function computed on the reweighted graph. This tends
to preserve dense structures, since edges linking more central
nodes in such dense clusters are less likely to be cut.

We study the performance of the proposed spectral parti-
tioning method using synthetic graphs with known community
structure. We demonstrate that spectral clustering based on
epidemics leads to a better recovery of ground truth commu-
nities than traditional methods based on the graph Laplacian,
especially in graphs that are more challenging because of the
presence of many edges between clusters. Our work suggests
that epidemic diffusion can be a useful probe of graph struc-
ture, as it can illuminate properties of graphs that are distinct
from those found by methods based on the random walk.

II. SPECTRAL CLUSTERING

An unweighted graph G = (V, E), with vertices (or nodes)
V and edges (or links) E, can be represented by a |V| x
|V| adjacency matrix A, with A;; =1 if the edge (i,j) € E,
and A;; = 0 otherwise. By convention A;; = 0. We consider
undirected graphs, where A;; = Aj;. The degree of node i is
defined as the number of edges incident on it, d; = Y j Ajj.
Other useful constructs are D, a diagonal degree matrix where
D;; = d;, and the identity matrix I.
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A. Graph Laplacian and spectral clustering

The graph Laplacian matrix is defined as L = D — A. The
eigenvalues and eigenvectors of L capture many properties
of the graph. In the simplest case, if the graph has k disjoint
components, the k smallest eigenvalues of L are zero, and
the associated eigenvectors are indicator functions assigning
nodes to their respective cluster or community [7]. Even if the
k smallest eigenvalues are not all zero, their corresponding
eigenvectors can be used to partition nodes into k clusters
by projecting these nodes onto a subspace of the first k
eigenvectors and using standard clustering techniques such
as k means [2,5]. The simplest spectral clustering method,
spectral bisection, partitions nodes based on the values of the
second eigenvector v of the adjacency matrix, or the graph
Laplacian. A splitting value c is used to divide the nodes into
different clusters based on whether v; < c or v; > ¢ [6]. A
range of splitting values have been used, including zero, the
median value within the vector, the largest gap, and the value
producing the best ratio cut, best conductance [14], or another
measure.

In practice, normalized versions of the graph Laplacian
produce better results in spectral clustering applications [3,5].
Two examples are the symmetric normalized Laplacian Ly =
I — D2 AD~'/? and the random walk Laplacian Ly, = I —
D' A, so named because the matrix of transition probabilities
for a random walk on a graph is given by D' A.

B. Graph cuts and their quality measures

Intuitively, a cluster is a set of nodes S C V that are more
tightly connected to each other than to nodes outside of the
cluster. We use S = V \ S to denote the complement of S,
which consists of nodes that are not in S. In order to bisect
the graph into two disjoint clusters, one typically wants to
minimize the number of cut edges between clusters,

ES.8) = Y Aj

ieS,jes

while maximizing cluster size, which may be measured by the
number of nodes it contains, |S|, or the sum of the degrees of
the nodes in the set, v(S) = Zie s di, also called volume of the
set.

Several functions have been proposed for measuring the
quality of a graph cut. The best known of these are ratio cut
R(S) and normalized cut N (S):
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There is a relationship between graph cuts and spectral
clustering. Deciding which edges to cut to optimize any of
these quality functions is an NP-complete problem. Spectral
clustering solves a relaxation of the problem, where the
discrete indicator variables that assign nodes to clusters
become continuous. Although in general there are no useful
bounds for the approximation produced by this relaxation [7],
in practice it often provides a simple and effective clustering
method. Solutions to the relaxed optimization problem are
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given by the second eigenvector of the graph Laplacian L
or the normalized graph Laplacian L; [6]. Relaxing ratio cut
leads to spectral clustering using L, while relaxing normalized
cut leads to spectral clustering using L [2,7]. Such relaxation
methods have also been applied productively to the popular
modularity maximization method for community detection
[15,16]. By analogy with spectral bisection [6], the leading
eigenvector approach assigns nodes to clusters based on the
sign of the components of the leading eigenvector of the
modularity matrix.

C. Spectral clustering and random walks

There exists a further relationship between spectral cluster-
ing, the partition quality function, and properties of random
walks. A random walk on a graph is a stochastic process where
transitions take place to arandomly chosen neighbor of a given
node. Cluster properties of the graph can be expressed in terms
of the transition matrix D~ A [17] of a random walk. Spectral
clustering finds a partition such that arandom walk stays within
the same cluster for a long time and seldom jumps between
clusters [2,9]. Therefore, the presence of a good partition (low
normalized cut value) implies that it will take a random walk
a long time to reach its equilibrium distribution.

III. EPIDEMIC DIFFUSION ON GRAPHS

An epidemic is a dynamic process that simultaneously
undergoes transitions to every neighbor of the current node.
Epidemics are used to model the spread of disease [18] and
innovation [11] in social networks. Epidemics differ from
random walks in important ways. First, rather than choosing a
single neighbor to transition to or “infect” as the random walk
does, an epidemic will attempt to “infect” every neighbor of a
node. In a random walk, the probability of finding the walker
in a given location is a conserved quantity that diffuses through
the graph, and the random walk transition matrix is a stochastic
matric. Epidemics, on the other hand, replicate themselves with
each successful transmission, without following a conservation
law [12].

Lerman and Ghosh [12] introduced the replicator operator
R = A I — A to describe dynamics of synchronization in a
network of nodes coupled via epidemic diffusion. Here Ap,x
is the largest eigenvalue of A, also known as the epidemic
threshold [19]. In this system, a dynamic variable u; associated
with node i can change its value based on the values of its
neighbors according to

du
i Ru, 3)
where R replaces the Laplacian used in the analogous heat
equation that gives the (diffusive) evolution of a random walk
on a graph [20]. By construction, the replicator has a steady
state given by @, the eigenvector of A associated with Apax:
A0 = hpnax0. 6 is also known as the eigenvector centrality [13]
and was introduced by Bonacich to explain the importance of
actors in a social network based on the importance of the actors
to which they were connected.
Clusters of nodes with similar values of the dynamic
variable # emerge as the system of coupled nodes evolves
toward the steady state [12]. This motivates a community
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detection method with nodes classified according to the rate
of convergence to their steady-state values. For large time 7,
we approximate the solution to Eq. (3) using the two leading
eigenvectors @ and ¥ of R,
ui(t) = c16; + c2e”' Y = c16; |:1 + c—ze"\zfﬁ}
c 0;

where ¢; and ¢, are constants, and A, is the second smallest
eigenvalue of R associated with eigenvector ¥, guaranteed to
be nonzero if the graph is connected. Therefore, convergence
depends on v; /6;, the componentwise ratio of the second to
first eigenvectors. Note that eigenvectors of R corresponding to
R’s two smallest eigenvalues are the same as the eigenvectors
of A corresponding to A’s two largest eigenvalues.

A. Replicator as the symmetric normalized Laplacian
of a reweighted graph

In a social network, one might expect nodes of high
“importance” to attract other nodes, resulting in communities
forming around nodes with large eigenvector centrality values
6;. In this section we propose a modification of our graph,
converting the unweighted network into a weighted one, where
weights are given by the product of the eigenvector centralities
of an edge’s end points: A; j = A;;6;0;. Moreover, we show
that the replicator on the unweighted graph given by A is in
fact exactly equivalent to the symmetric normalized Laplacian
of the reweighted graph given by A.

In the reweighted graph, the degree of node i is given by

~ 2
j j

For convenience, define ©® as the diagonal matrix whose
elements are the components of eigenvector 8, i.e., ©;;. Then,
from A;; and d; above,

A=0AO and D =i, O 4)

We can now write the symmetric normalized Laplacian of the
reweighted graph:

L,=I-D"?AaD

1 1
=1- 0 ')e40 ®1>
( \Y )"max ) < )"max
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Hence, R = Ay Ly.

The equivalence between epidemics and the diffusive
process of random walks is at first surprising. Diffusive
processes conserve the total amount of the substance diffusing,
whereas no such conservation law holds for epidemics [12].
The intuition for the equivalence of the two processes is the
following. A node’s eigenvector centrality gives the number
of paths connecting it to all other nodes in the graph [21];
hence, the product of eigenvector centralities of a pair of nodes
captures how much of the substance is newly created when the
epidemic follows the edge linking the pair. By encoding the
amount of nonconservation in edge reweighting, this scheme
allows the epidemic to be reduced to diffusion.
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Quality|Cut A|Cut B

Original graph
R(S) [ 1.83 | 1.83
N(S) |0.528 [0.417

Reweighted graph
R(S) | 11.4 | 32.3
N(S) |0.7470.778

FIG. 1. (Color online) (Left) An example graph. The possible cuts
are shown by the dotted curves A and B. (Right) Quality measures of
cuts A and B on the original and reweighted graph.

B. Quality measure for the replicator

The equivalence proved above allows us to exploit the
properties of the symmetric normalized Laplacian, along with
its relationship to graph partitioning, for epidemic diffusion.
Since the replicator is simply L, of the reweighted graph A,
spectral clustering using the replicator corresponds to a relax-
ation of normalized cut on this reweighted graph. The appropri-
ate measure for assessing graph cut quality with the replicator
is therefore normalized cut on the reweighted graph N (S).

C. An illustrative example

We use a simple example to highlight the differences
between traditional graph partitioning and one based on
epidemics. Consider the graph in Fig. 1, which shows a dense
cluster connected through node 6 to a sparsely linked cluster.
Such a configuration is common in social networks, where a
high-degree hub linking different communities may obscure
community boundaries. We expect a good partition to group
node 6 with other nodes in its clique. However, the cut (B) that
minimizes normalized cut [N'(S)] groups node 6 with nodes
1-5 and assigns nodes 7—11 to the other cluster. Multiple cuts
minimize ratio cut [R(S)], including one that groups together
nodes 3-5.

Node 6 has the highest eigenvector centrality. Furthermore,
nodes that belong to the clique have higher centrality values
than other nodes. Consequently, in the reweighted graph,
the edges linking node 6 to the rest of the clique are more
“expensive” to cut, and nodes 6-11 are grouped together by
the preferred cut (A) that minimizes both the ratio cut R(S) and
the normalized cut A/ (S) on the reweighted graph. The quality
measures of the cuts are shown in the table in Fig. 1. By giving
edges linking central nodes a higher weight, epidemic-based
graph partitioning thus preserves dense, clique-like structures.
Accordingly, deleting these edges will have the greatest impact
on reducing the spread of an epidemic [22].

D. Efficient spectral partitioning

We now describe an efficient method for spectral clustering
using epidemic diffusion based on spectral bisection [6].
First, we create a vector v that is the componentwise ratio
of the second eigenvector ¥ to the first eigenvector 6 of
the operator R and sort its values. Next, we examine all
N — 1 cuts in this ordering (where N = |V|) and pick one
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corresponding to the partition that minimizes an appropriate
quality measure. The quality measure we use with R is
normalized cut on the reweighted graph [A/(S)]. We compare
the resulting partition with those produced by applying an
analogous splitting procedure to L, with quality measure R(S),
and L, with quality measure N(S) (on the original graph).

The proposed optimization procedure is exhaustive, since it
tests all N — 1 possible cuts within the ordering produced by
v. It may seem that there would be some loss in accuracy from
restricting our search to cuts in a one-dimensional projection,
rather than searching over the entire subspace spanned by the
first two eigenvectors 6 and ¥. However, it has been observed
[2,23] that the componentwise ratio of the second to first
eigenvector of L; is precisely equal to the second eigenvector
of the random walk Laplacian L., whose first eigenvector is
a constant vector. Thus, our algorithm is effective because it
is a computationally efficient procedure for finding the best
normalized cut in the two-dimensional eigenspace of Ly, i.e.,
L., on the reweighted graph. The advantages of using L.y, in
spectral clustering are discussed in Ref. [7].

IV. EVALUATION ON SYNTHETIC GRAPHS

We use synthetic graphs to gain better insight into the
differences between operators L, L, and R and the charac-
teristics of graphs for which different operators find better
solutions. Lancichinetti and Fortunato have proposed an
algorithm to generate random graphs with known hierarchical
community structure [24]. The N nodes are divided into
macro communities, which are themselves composed of micro
communities, and then edges between nodes are created using
mixing parameters w and u,. The parameter u; designates
the fraction of a node’s edges that will connect to nodes
in a different macro community, and w, gives the fraction
of edges that will connect to nodes in a different micro
community within the same macro community. The remaining
(1 — w1 — pp) fraction of edges link to other nodes within
the same micro and macro communities. These benchmark
networks allow us to systematically explore the performance
of different spectral clustering approaches.

Using software available on Ref. [25], we generated 100
graphs for each set of parameter values. We took N = 100
with two macro communities. We varied p; and @, between
0 and 0.5. The average clustering coefficient ranged between
0.23 and 0.6421, suggesting that the synthetic graphs have
properties similar to those often found in real-world networks
[26] (Fig. 2).
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FIG. 2. (Color) Each pixel represents the mean average clustering
coefficient (left) and the standard deviation (right) across 100 runs
for fixed (w1, u2).
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FIG. 3. (Color) NMI scores for minimizing the respective opera-
tors’ quality measure. Each pixel represents the average (left) or stan-
dard deviation (right) NMI score across 100 runs for fixed (141, 142).

We partition each benchmark graph using L, Ly, and R by
minimizing their respective quality measures. To evaluate the
resulting partitions, we use the normalized mutual information
(NMI) measure [27], which compares the partition to the
ground truth communities. When the value of this measure
is 1.0, the partitioning method has successfully recovered the
underlying community structure. We calculate the average
and standard deviation of the NMI scores for a fixed set of
parameters and display the results in Fig. 3.

As the proportion of a node’s edges that connect to
individuals in the opposite community, p, increases, it
becomes more difficult to divide the network into the correct
communities. We find that L and L give better results when
w1 is small (very few links between the two communities).
As p; increases, R dominates with a higher NMI score.
Additionally, R has the lowest standard deviation of the three
operators, indicating a consistent performance in identifying
the underlying communities.

V. CONCLUSION

Spectral partitioning traditionally uses the graph Laplacian.
In this paper, we have introduced a method for spectral
partitioning using the replicator, an operator describing
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epidemic diffusion on graphs. We have shown that this operator
is equivalent to the symmetric normalized Laplacian on a
different graph, where edges are reweighted according to the
eigenvector centrality measure. By reweighting the edges, a
higher weight is placed on globally important nodes. Thus,
this method tends to preserve cliques and other dense clusters.

We have introduced a spectral bisection approach based on
the componentwise ratio of the second to the first eigenvector
of R, choosing the partition by splitting the sorted vector so
as to minimize an appropriate quality measure. Comparing the
performance of different methods on synthetic graphs with
known community structure, we have shown that spectral
partitioning using the replicator is better able to recover the
underlying community structure, especially in cases where
more edges between the two macro communities make it more
difficult for the Laplacian and symmetric normalized Lapla-
cian to identify communities. By reweighting the edges using

PHYSICAL REVIEW E 88, 042813 (2013)

eigenvector centrality, the replicator assigns more importance
to central nodes. Thus, the edges that pass between clusters are
given less influence if they do not link nodes of high centrality.
By limiting the cuts to influential edges, the method leads to a
more accurate reconstruction of the community structure.
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