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Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed
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Abstract- We consider the problem of cooperative search
using autonomous aquatic vehicles, giving a proof-of-concept
demonstration in an aquatic testbed. We implement a point-to
point controller for remote-controlled submarines with severe
control and buoyancy limitations, develop software to track
their motion and establish reliable communication and control.
We then propose multiple randomized algorithms, based on
Levy flights, for locating sparse targets in a three-dimensional
bounded environment. These algorithms are tested in simula
tion, showing that they are competitive with nonrandom sys
tematic search, while likely also more robust. The simulations
are combined with in-tank tests to display performance under
real physical conditions.

I. INTRODUCTION

While multi-agent coordination for autonomous vehicles
has been studied extensively in two-dimensional environ
ments [1], [2], [3], little work has been done on the three
dimensional problem. Many applications for autonomous
vehicles involve three-dimensional domains, notably aerial
and aquatic environments. Such applications include mon
itoring of atmospheric conditions, surveillance and rescue
operations, among others. Three-dimensional environments
often impose limits on vehicle mobility, ranging from the
non-holonomic constraint of a finite turning radius to the
turbulent effects of air and water currents. Implementing
control algorithms under these conditions can therefore be
a significant challenge.

We consider the problem of cooperative search using au
tonomous aquatic vehicles. Cooperative underwater robotics
experiments are somewhat few and far between, compared to
land-based work. Several platforms have been documented
in ocean environments [4], [5], in rivers and lakes [6] and
in indoor facilities such as swimming pools [7]. Additional
examples use surface vehicles such as kayaks [8] or low
speed air vehicles (e.g., balloons) as proxies for underwater
vehicles [9]. Ocean-going vessels can be prohibitively expen
sive for the university researcher, costing from $500K to over
a million dollars for a larger deep-sea vehicle, depending on
the desired size, sensors, and depth capabilities. Vehicles on
the scale of meters, such as a glider, can still cost on the order
of $100K for a single vehicle. A surface kayak, outfitted with
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autonomous controls and sensors may cost on the order of
$20K. Even in the example with the smallest platform [7],
the vehicles span on the order of a meter and the testbed
arena has the footprint of a room. Independent of cost, these
larger technologies are often prohibitive for smaller campus
laboratories due to space constraints. Many groups do not
have access to marine resources or even dedicated space with
a larger tank or pool. The goal of this work is to build a truly
miniaturized aquatic testbed that fits in the space of a large
aquarium with robots on the scale of centimeters rather than
meters. Such a testbed has the advantage of using cleaner
radio signals due to the size of the tank - the challenge is
the design and control of the miniature vehicles. Our work
parallels a number of prior papers on miniature land-based
robots and takes these small robotics experiments to the
3D domain with swimming vehicles. A major challenge of
this particular testbed is the underactuation of the vehicles,
leading to some redundancy of motion, as discussed in detail
in the manuscript.

In this paper, we implement a point-to-point controller, in
a testbed tank, for mobile sensors with very limited motion
and control capabilities. The robots used are inexpensive, 8
cm long, remote controlled (RC) submarines. By restricting
ourselves to primitive devices, we provide a proof-of-concept
demonstration of how such vehicles may effectively perform
search functions even under severe control and buoyancy
limitations. We use our testbed implementation to investigate
three-dimensional search strategies for single and multiple
vehicles, extending existing two-dimensional search algo
rithms [10], [11], [12], [13], [14], [15]. The strategies are
based on Levy flights, in which path directions are chosen
uniformly at random but with a path length sampled from a
power-law distribution, offering the possibility of occasional
long-distance motion. This kind of search is known to be
effective for foraging problems and has been documented
in several animal behavior studies [16], [11], [14]. We
adapt these algorithms to coordinate multiple submarines,
combining simulations with actual tank tests to find efficient
methods of locating sparse targets in the physical testbed.

Section II presents the testbed hardware and systems.
In Section III, we describe single and multi -agent search
strategies, while Section IV presents results from large
scale simulation. Finally, Section V presents conclusions and
suggestions for future work.

II. TESTBED HARDWARE AND SYSTEMS

The testbed is a 208x70x40 cm tank (Fig. 1). Tracking
data are collected using a set of cameras, through a pro-
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Fig. 1. Camera positions are circled in yellow. One faces the side of the
tank, and two view the bottom.

gram that extracts location and rotation. The control system
uses the desired locations of each submarine to calculate
the necessary motor commands. The commands are then
passed through an Arduino microcontroller to the physical
submarines. The information flow is shown in Fig. 2.

Fig. 2. Simultaneous information flow in the system.

A. Submarines

The submarines used in this first-generation testbed are
8 ern x 2.6 em SUB-SONIC XP recreational class models.
They include three propellers. Two rear propellers allow for
movement in the horizontal plane, either forward, backwards
or off. A central propeller allows for movement along the
z-axis, with integer settings ranging from -7 (maximum
downwards motion) to +7 (maximum upwards motion).
There is no built-in mechanism to regulate buoyancy, making
motion control particularly challenging.

The vehicles were modified for better control and tracking.
To track orientation, colored tape was placed to the bottom
of each submarine, with a different color at the bow and
stem. For better control, resistors (between 2.7 and 5.6 0)
were soldered into the wires leading to the motors, beneath
the plastic cases, resulting in slower but more controlled
actuation. Finally, to achieve neutral buoyancy, they were
weighed down with coils of lead wire and styrofoam pieces.
The modifications led to some unavoidable leaking, and thus
to increasingly negative buoyancy over the course of an
experiment.

B. Communication

The remote controls included with the original toy sub
marines were disassembled, and wires were soldered into
the printed circuit board at button terminals. This electrically
mimics the thumbs of a human operator. A similar strategy
was used in a first generation land-based miniaturized testbed
[17]. These wires were connected to an Arduino microcon
troller, which was in turn connected to a computer. The
Arduino, running custom software, receives commands on its
serial input, then translates these to the appropriate electrical
impulses.

C. Tracking

Given the small size of our submarines, it was infeasible
to embed on-board sensors. Instead, we developed a tracking
system, building on the work by Pruitt et at. [18]. The
tracking system is implemented in C++ and OpenCV [19].
Three cameras image the tank, as shown in Figure 1: two
from the bottom, each of which view about half of the tank,
and one from the side. The bottom camera images are de
keys toned, to correct for distortion from the camera angles,
and then stitched together. The stitched bottom image and
the side image are then filtered in a similar process. A
subimage of each known submarine is extracted, as shown
in Figure 3. The algorithm for the bottom cameras also takes
color into account when generating subimages, inferring
submarine orientation by drawing a straight line between
the most likely bow and stem subimages. Finally, a pre
computed transformation converts pixel location (x and y
location in bottom and side images) to physical location (x,
y, and z coordinates relative to the corner of the tank). This
transformation was computed using data from calibration
images using a quadratic fit.

Fig. 3. Starting from the stitched image (a), a previously captured image
of an empty tank (b) is subtracted. The resulting image is dilated, smoothed
and thresholded (c) to produce a subimage. Using the CvBlob library within
OpenCV, the new subimage is located (d) in the frame.
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D. Control

Due to the primitive steering mechanism of the robot,
we implemented a bang-bang type controller for point-to
point control, involving separate processes for horizontal and
vertical motion. The horizontal location control process relies
on the angle between the horizontal heading of the submarine
and the direction of the target point (Fig. 4). One of five fixed
maneuvers is implemented depending on this heading:

• If the destination is directly ahead (within a threshold
angle 0:1), go forward with both motors.

• If the destination is between 0:1 and a second threshold
angle 0:2 (in either direction), go forward with one
motor while keeping the other turned off. This results
in a modest turn towards the target and forward motion.

• If the destination is greater than the threshold angle
0:2 to the right or left, go forward with one motor
and backwards with the other motor. This will cause
a fast rotation towards the target and very little for
wardlbackward motion.

Fig. 4. Left and right motor behavior as a function of destination's angular
position. Arrows indicate motion direction and a dot indicates no motor
action. Values 01 and 02 are thresholds delimiting each type of movement.

The threshold angles 0:1 and 0:2 are adjustable parameters,
currently set at 0:1 = :g- and 0:2 = ~. These choices provide
sufficient horizontal control, although they could presumably
be optimized further. The vertical control is a simple bang
bang control. If the submarine is below the destination, it
activates the motor to send it upwards; if above, the motor
is activated to send it downwards. In order to avoid the
motion instabilities that arise from using both horizontal
and vertical control processes simultaneously, we toggle
between the two, using the following strategy. First, adjust
the vehicle's vertical location, without moving horizontally,
until it is within 2.5 em of the target's vertical location. Then
switch to horizontal control, moving the vehicle towards the
target with its vertical propeller stopped. If at any point its
vertical position is more than 10 em away from the target's
vertical position, restart the vertical location adjustment.
This strategy was implemented as a state machine in the
MATLAB code for the control system.

E. In-Tank Test

To examine the precision of the control system, we ex
amined the results of a single jump, from a known starting

point. The submarine started on a simple launch platform and
was directed to a point on the other side of the tank using
the automated control system. Two examples of this single
jump are showed in Figure 5. In spite of the severe buoyancy
and mobility challenges discussed earlier, the submarines
were successful in navigating autonomously from the launch
platform to the desired destination. Note that the bang-bang
style controller results in oscillatory motion in both the
horizontal and vertical directions, however the robot still
reaches its destination. This type of motion is typical of
underactuated controllers such as those sometimes used to
steer a ship. In [20] a time-periodic underactuated controller
was designed, however the system was assumed to have
relatively small noise resulting in the design of a smooth
(sinusoidal) time-periodic controller rather than the bang
bang controller used for our primitive submarines.

Fig. 5. Two single-jump tests, superimposed in different colors. All tests
start on the launch platform and travel towards the point marked with a
black dot. The control system results in similar paths for the two separate
runs.

III. SEARCH ALGORITHMS AND SIMULATIONS

A practical application of this simple physical testbed is
target searching in a three-dimensional aquatic environment.
Many search problems in real-world environments of this
kind, such as finding animals for tagging, lost boats, or mines
in minefields, involve sparsely located targets. These appli
cations are best modeled with a destructive target scheme
in which targets may only be found once. Previous studies
have found the use of Levy flights to be an efficient strategy
for finding sparse targets in a two-dimensional environment
[10], [11], [12], [13], [14], [15], and more recent results
suggest that this may apply in three dimensions as well
[21]. In what follows, we simulate and implement several
methods for target search using aquatic vehicles that follow
Levy flights.

A. Levy Flight

A Levy flight is a random walk with step lengths chosen
from a heavy-tailed probability distribution. Steps in the
three-dimensional Levy flight are constructed as follows.
First, a point is chosen uniformly at random on the surface
of a unit sphere. This establishes the direction for the step.
Second, the step length £ is chosen from a probability density
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for f 2 xo, where Xo is the minimum step length, and A
is known as the Levy exponent. This distribution can be
normalized provided that A > 1. For 1 < A < 3, the step
length has infinite variance, resulting in a path that mixes
short and long jumps: f has a scale-free distribution, though
smaller values of A will generate long jumps more frequently
than larger values. For A > 3, the variance is finite, and
the central limit theorem applies, resulting in Brownian
motion with a fixed diffusion length-scale determined by
the variance. Intuitively, Levy flights with A ~ 3 are
effective search strategies because the scale-free distribution
occasionally causes an unusually long jump. Thus, the search
agent thoroughly searches a small region of the space, then
jumps to a region that is likely previously unexplored and
begins again. This behavior is similar to that of a foraging
animal who searches for food in a given area with a series
of small movements, then travels a larger distance to another
area to search again.

In our search algorithm, we consider a target to be
discovered if the searching vehicle passes sufficiently close
to it. Some groups have investigated target detection with
noisy sensors, so that there is no guarantee of finding a
nearby target [3], but we will assume for simplicity that any
target within a given detection radius is discovered. Using the
destructive target scheme, we count each unique target and
continue the search until a predetermined number of targets
are discovered.

B. Multi-agent Search Strategies

We have considered four different Levy search strategies
for multiple agents.

1) Independent search: Each submarine independently
runs a Levy search in the entire tank.

2) Bounded region search: Divide the tank into regions.
Each submarine is assigned to a region and runs a
bounded Levy search that only returns target points in
that region. This method is also known as "divide-and
conquer" [3].

3) Biased angle search: A submarine biases its choice
of direction based on the position of other submarines.
The direction is chosen from a von Mises-Fisher dis
tribution [22]

f (0) ex: e tlJ cos () ,

which is close to a normal distribution on a circle. This
distribution has previously been used to bias a Levy
walk when a priori information is known about the
target distribution [12]. In our case, we define 0 == 0
to be the direction opposite that of the nearest other
submarine. The parameter fi approximates the recip
rocal of the distribution's variance, so that submarines
repel each other with high probability when fi is large,
whereas there is no angular bias when fi == O. In order
to set fi for a given vehicle, we assume that the distance
d to the nearest other vehicle is known: in our testbed,
position information is passed through the Arduino
microcontroller, though in a real setting it would be

determined by direct inter-vehicle broadcast. We then
let fi == dold. Empirically, we have found that the
algorithm's performance is best when do is close to
the detection radius, though it is relatively insensitive
to its exact value. For simplicity, we set do to exactly
the detection radius.

4) Biased jump length search: A submarine dynamically
chooses a value of A for its jump length distribution.
Prior results have shown that A should approach 1
for optimal search [13]. Therefore, we vary A towards
1 when other submarines are nearby-they are more
likely to take long jumps-and towards 2 otherwise
they mostly take short jumps. We let each submarine
adjust A to be

A == 1 + e-(d1/d)2,

where d is again the distance to the nearest other vehi
cle. We set the parameter value d1 == 100 ern, so that
A == 1.5 when the two submarines are approximately
half of the maximal distance from each other in the
tank.

c. Implementation

In order to determine the optimal parameter(s) for each
multi -agent search strategy and the best such strategy overall,
we implemented a simulation framework in MATLAB with
the following settings. The search space dimensions were
chosen to be x x y x z == 208 x 70 x 40 ern. For the
bounded region search for two submarines, we divide the
tank into two halves by cutting across the x dimension. The
simulated detection radius is r == 10 ern, The minimum jump
length is Xo == 5 ern. For path planning purposes we assume
reflective boundaries. The search space contains four targets,
with the same set of targets used in every run for every
simulation type: two distinct targets must be found for the
search to complete. For each of the algorithms (excluding
the biased jump length algorithm), we varied the value of A
between 1.1 and 3.1 in increments of 0.5. Each setting was
run 5,000 times in simulation. Performance is measured by
the total path length, which is indicative of the total time
spent searching. When there are multiple submarines, the
path length is measured for the submarine that finds the
second unique target, up to the jump in which it finds that
target.

IV. SIMULATION RESULTS

A. One Vehicle

In all algorithms, performance is best as A approaches 1.
The quality degrades as A increases, continuing to do so for
A > 3 as the motion becomes Brownian with decreasing
variance. Thus, frequent long jumps are clearly favorable.
At A == 1.1, where performance is best among the values
that we implemented, the average search length for two
vehicles performing a bounded region search (693 ern) is
almost exactly half that of a single vehicle (1388 ern), as
one might ideally expect. Interestingly, as A increases, the
performance of a single submarine degrades faster than that
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Fig. 6. Results from five thousand simulations showing average search
length vs. A. For ease of comparison, the single-vehicle results are for half
of the search length. Best performance is found at A = 1.1, consistent with
existing two-dimensional results [10]. The biased jump length algorithm
sets A dynamically: these results are shown in Figure 7.

of the two-submarine search methods. This is consistent with
the intuition that the longer jumps are crucial for searching in
a larger region such as the entire tank. The results are shown
in Figure 6, which compares half of the single-vehicle search
length with the two-vehicle search lengths.

B. Two Vehicles

Figure 7 compares the results for two submarines at A ==
1.1, showing the 95% confidence intervals for search distance
under the four different strategies.

Two submarines implementing the bounded region
(divide-and-conquer) strategy had the lowest average search
length, consistent with prior results in two dimensions [3].
The method was implemented by dividing the tank into two
equal halves along the yz-plane. The fact that the searchers
only move within their own region means that they do not
waste time overlapping.

The average search length for the biased angle algorithm
was about 1% higher than for the bounded region algorithm
at A == 1.1. Given the confidence intervals, this difference is
not statistically significant. In our tests, the performance of
the biased angle algorithm appeared relatively insensitive to
the exact value of the parameter do (and hence /'l;). However,
these results suggest that with a more exhaustive study, the
method could conceivably be tuned to the point where it
outperforms the other search algorithms. Note that for do
too small, /'l; will be small and the variance in angle will be
large, so the method will not differ from independent search.
For do too large, the submarines will repel each other and
therefore avoid the center of the tank.

The biased jump length algorithm performed the worst,
compared with the other strategies with fixed A == 1.1. De
termining the best value of the parameter d1 (and hence the
dynamic A) for this algorithm is again a delicate balancing
act. The average distance between vehicles in this search
seems greater than reasonable, meaning that as in the biased
angle algorithm with large do, submarines are not spending
enough time in the center of the tank. The performance can

Fig. 7. Statistical comparison of algorithms for two submarines at A = 1.1,
showing average search length and 95% confidence intervals. Differences
in performance of bounded region (divide-and-conquer), biased angle and
independent methods are not statistically significant. Biased jump length,
where A is set dynamically, performs poorly compared to the others at
A = 1.1.

be improved by increasing d1 further, so as to make larger
values of A more rare. However, whether those large values
of A are ever helpful is inconclusive.

C. Comparison with Systematic Search

It is instructive to compare these simulation results with
what one would theoretically expect from a systematic (raster
scan) search of the tank. Comparisons of this sort have
previously been performed in one and two dimensions [23],
[24]. These studies confirmed that in the absence of any
a priori knowledge of the target distribution, one cannot
generally outperform a perfectly executed raster scan search
given a sufficiently large search space. A lower bound for the
travel distance required to search the entire tank with a raster
scan search is calculated as follows. Consider the minimal
distance swept out by parallel but overlapping cylinders,
oriented along the x dimension of the tank, such that in
the cross-sectional yz-plane these cylinders cover the entire
tank. Figure 8 shows that 15 cylinders are needed, given the
y- and z-dimensions of our tank. Since the tank's length is
x == 208 ern, the length of each cylinder must be at least
x - 2r / V2 == 208 - 10V2 ern, accounting for the additional
hemispherical region detected at the two ends of the cylinder.
This gives a lower bound on the length of the raster scan path
of 15 x (208 - 10V2) ~ 2908 ern. Thus, the average search
length for a single raster search to find half of all targets
(2 out of 4) distributed uniformly at random in the tank is
bounded below by half of this total distance, or 1454 ern.

It may seem surprising that the single Levy search vehicle
requires only 1388 em, a 5% reduction over the appar
ent lower bound on the raster search. This is a simple
consequence of the raster requiring an integer number of
cylindrical sweeps. If the search space is increased with the
detection radius held constant, the constraint of an integer
number of cylinders will become asymptotically negligible,
and the path length will be approximately

d ~ .E: _z_ (x _ V2r) == xyz _ ~
V2r V2r 2r 2 V2r .
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Fig. 8. Cross section in yz-plane of cylindrical regions detected by a
raster search. For complete coverage of cross-sectional area, centers are
placed v!2r = lOv!2 em from each other, requiring at least 5 cylinders in
y-direction and 3 cylinders in z-direction.

Under idealized conditions, this would lead to an approx
imated average search distance of 1357 cm, which is 2%
below the single Levy search vehicle distance. However,
this assumes that the raster search can be executed perfectly,
which is highly unlikely in real aquatic conditions. The Levy
search, by contrast, is likely to be far more tolerant of im
precision because it is in itself a random construction. Thus,
even in near-asymptotic conditions, it is not implausible that
the Levy search would slightly outperform the raster scan.

D. In-Tank Test

As a proof of concept, we tested the Levy flight in our
physical testbed. This test used the same path generation
code as in the simulations, seeded with the same value for
every run. Figure 9 plots the submarine's actual motion, as
measured from data saved by the tracking system, against its
prescribed path.

The aquatic vehicles employed in the experiments were
tiny, low-cost ($40) toy submarines. While the tests provided
evidence that low-cost hardware could be used, we have
determined that for future testing, we will move to a still
inexpensive ($125) but larger and more stable vehicle.

Fig. 9. Typical Levy search without targets. Path of 955 em is two orders of
magnitude greater than the length of the vehicle and is limited by buoyancy
and battery time. Red path depicts calculated Levy flight trajectory. Blue
path depicts submarine's actual trajectory.

v. CONCLUSIONS AND FUTURE WORK

We have provided a proof-of-concept demonstration of
cooperative search algorithms for aquatic vehicles with very
limited control capabilities. Using inexpensive remote con
trolled (RC) submarines, we have developed a point-to
point controller that functions even under poorly regulated
buoyancy and mobility conditions. We have tested a number
of different three-dimensional random search algorithms,
based on Levy flights, for finding sparse targets using these
submarines. Our algorithms perform optimally when the
Levy exponent, specifying the degree of the power-law
distribution for step lengths, approaches 1. This mirrors
earlier findings for Levy search in two dimensions [10].

We have found in simulations that for a Levy search with
two submarines, bounding the allowable search region for
each submarine (divide-and-conquer) results in essentially
ideal performance, maintaining almost the identical cumula
tive search distance and thus reducing search time by 50%.
To within statistical error, this performance is comparable to
that of the biased angle method that repels nearby vehicles,
as well as to that of the independent search method.

Remarkably, a Levy search outperforms a systematic raster
sweep of the entire tank: a single submarine requires an
average Levy search distance that is 5% below a theoretical
lower bound on the raster search distance. This is partly due
to finite-size effects in the tank. The raster search requires an
integer number of sweeps, resulting in a loss of efficiency
for small volumes. However, our results suggest that even
under asymptotic (large volume) conditions, the Levy search
will be competitive with raster search. We would expect that
the randomness inherent in the Levy search would make it
more robust to control imprecision than the raster search,
which requires perfect execution with precise sharp turns
in order to maintain its performance quality. Consequently,
under imperfect experimental conditions or environmental
disturbances, the three-dimensional Levy search may signif
icantly outperform systematic search methods. Quantifying
this effect remains an open problem. Drift and sensor posi
tioning errors may be modeled, for example, by Brownian
motion. While ocean currents may induce a directional bias,
a simple unbiased model would likely provide a lower bound
on the error in raster search. This approach, along with
more detailed in-tank comparisons, could help clarify the
comparative advantages of Levy search.

Another direction for further research is the extension
of our study to more than two vehicles. This is likely to
require a larger physical testbed and a more sophisticated
tracking system. Additionally, a second-generation testbed
might involve submarines with somewhat better buoyancy
control. While there are merits to using imperfect devices
in order to create control challenges, the search distance
in current in-tank tests may be excessively attributable to
buoyancy correction, and make it difficult to perform a true
physical testbed analysis of Levy search algorithms. One
option is to use submarines with a ballast system, rather
than propellers: preliminary tests with the Graupner U-16
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model [25] show promise. An interesting problem would then
consist of optimally designing a controller for these second
generation vehicles, based on their own motion limitations.
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