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We study the connection between the order of phase transitions in combinatorial problems
and the complexity of decision algorithms for such problems. We rigorously show that, for a
class of random constraint satisfaction problems, a limited connection between the two phe-
nomena indeed exists. Specifically, we extend the definition of the spine order parameter of
Bollobás et al. [10] to random constraint satisfaction problems, rigorously showing that for
such problems a discontinuity of the spine is associated with a 2�(n) resolution complexity
(and thus a 2�(n) complexity of DPLL algorithms) on random instances. The two phenomena
have a common underlying cause: the emergence of “large” (linear size) minimally unsatisfi-
able subformulas of a random formula at the satisfiability phase transition.

We present several further results that add weight to the intuition that random constraint
satisfaction problems with a sharp threshold and a continuous spine are “qualitatively similar
to random 2-SAT”. Finally, we argue that it is the spine rather than the backbone parameter
whose continuity has implications for the decision complexity of combinatorial problems, and
we provide experimental evidence that the two parameters can behave in a different manner.
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1. Introduction

The major promise of phase transitions in combinatorial problems has been to shed
light on the “practical” algorithmic complexity of combinatorial problems. A possible
connection has been highlighted by results of Monasson et al. [25,26] that are based on
experimental evidence and nonrigorous arguments from statistical mechanics. Studying
a version of random satisfiability that “interpolates” between 2-SAT and 3-SAT, they
suggested that the order of the phase transition, combinatorially expressed by continuity
of an order parameter called the backbone, might have implications for the problem’s
typical-case complexity. A discontinuous or first-order transition appeared to be symp-
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tomatic of exponential complexity, whereas a continuous or second-order transition was
correlated with polynomial complexity.

It is understood by now that this connection is limited. For instance, k-XOR-SAT
is a problem believed, based on arguments from statistical mechanics [29], to have a
first-order phase transition. But it is easily solved by a polynomial algorithm, Gaussian
elimination. So, if any connection exists between first-order phase transitions and the
complexity of a given problem, it cannot involve all polynomial time algorithms for the
problem. Fortunately, this does not end all hopes for a connection with computational
complexity: descriptive complexity [15] provides a principled way to measure the com-
plexity of problems with respect to more limited classes of algorithms, those express-
ible in a given framework. Here we focus on the Davis–Putnam–Longman–Loveland
(DPLL) class of algorithms [3].

One way to identify the connection between phase transitions and computa-
tional complexity is to formalize the underlying intuition connecting the two notions
in a purely combinatorial way, devoid of any physics considerations. First-order phase
transitions amount to a discontinuity in the (suitably rescaled) size of the backbone.
For random k-SAT [24], and more specifically for the optimization problem MAX-k-
SAT, the backbone has a combinatorial interpretation: it is the set of literals that are
“frozen”, or assume the same value, in all optimal assignments. Intuitively, a large
backbone size has implications for the complexity of finding such assignments: all
literals in the backbone require specific values in order to satisfy the formula opti-
mally, but an algorithm assigning variables in an iterative fashion has very few ways
to know what those “right” values to assign are. In the case of a first-order phase tran-
sition, the backbone of formulas just above the transition contains, with high proba-
bility, a fraction of the literals that is bounded away from zero. An algorithm such as
DPLL that assigns values to variables iteratively may misassign a backbone variable
whose height, in a binary tree characterizing the behavior of the algorithm, is �(n)

where n is the number of variables. This would force a backtrack on the tree. As-
suming the algorithm cannot significantly “reduce” the size of the explored portion of
this tree, a first-order phase transition would then w.h.p. imply a 2�(n) lower bound
for the running time of DPLL on random instances located slightly above the transi-
tion.

There exists, however, a significant flaw in the heuristic argument above: the back-
bone is defined with respect to optimal assignments for the given formula, meaning as-
signments that satisfy the largest possible number of clauses (or all of them, in the case
where the formula is satisfiable). The argument suggests that a discontinuity in the back-
bone size will make it difficult for algorithms that assign variables in an iterative manner
to find optimal solutions. The complexity of the optimization problem is, however, often
different from that of the corresponding decision problem. For instance, that is the case
in XOR-SAT, where the decision problem is easy but the optimization problem is hard.
As mentioned above, XOR-SAT is presumed to have a first-order phase transition, so
it is not clear at all that the continuity or discontinuity of the backbone should be the
relevant predictor for the complexity of the decision problem as well.
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Fortunately, it turns out that the intuition of the previous argument also holds for
a different order parameter, a “weaker” version of the backbone called the spine, intro-
duced in [10] in order to prove that random 2-SAT has a second-order phase transition.
Unlike the backbone, the spine is defined in terms of the decision problem, hence it could
conceivably have a larger impact on the complexity of these problems. Of course, the
same caveat applies as for the backbone: any connection with computational complexity
can only involve complexity classes that have weaker expressive power than the class of
polynomial time algorithms.

We aim in this paper to provide evidence that for random constraint satisfaction
problems the behavior of the spine, rather than the backbone, impacts the complexity of
the underlying decision problem. To accomplish this:

1. We discuss the proper definitions of the backbone and spine for random constraint
satisfaction problems (CSP).

2. We formally establish a simple connection between a discontinuity in the relative
size of the spine at the threshold and the resolution complexity of random satisfiabil-
ity problems. In a nutshell, a necessary and sufficient condition for the existence of
a discontinuity is the existence of an �(n) lower bound (w.h.p.) on the size of mini-
mally unsatisfiable subformulas of a random (unsatisfiable) subformula. But standard
methods from proof complexity [5] imply that for all problems where we can prove
such an �(n) lower bound, there is a 2�(n) lower bound on their resolution complex-
ity and hence on the complexity of DPLL algorithms as well [3]. This property arises
from the expansion of the underlying formula’s hypergraph, and is independent of
the precise definition of the problem at hand. Conversely, we show (theorem 1) that
for any generalized satisfiability problem, a second-order phase transition implies,
in the region where most formulas are unsatisfiable, an upper bound on resolution
complexity that is smaller than any exponential: O(2εn) for every ε > 0.

3. We give a sufficient condition (theorem 2) for the existence of a discontinuous jump
in the size of the spine. We then show (theorem 3) that this condition is fulfilled by
all problems whose constraints have no implicates of size two or less. Qualitatively,
our results suggest that all satisfiability problems with a continuous phase transition
in the spine are “2-SAT-like”.

4. Finally, we present experimental results that attempt to clarify whether the backbone
and the spine can behave differently at the phase transition. The graph bipartition
problem (GBP) is one case where this seems to happen. In contrast, for random
3-coloring (3-COL), the backbone and spine appear to have similar behavior.

A note on the significance of our results: a first-order transition or discontinuity
in the size of the spine is weaker than a discontinuity in the size of the backbone. In
the last section of the paper we give a numerical demonstration of an example where
the backbone and spine behave differently. And unlike for the backbone, we do not
have a physical interpretation for the spine. But this is not our intention. The argument
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connecting the continuity of the backbone order parameter with the complexity of deci-
sion problems is problematic, and what we rigorously show is that – with no physical
considerations in mind – the intuitive connection holds instead for the spine.

2. Preliminaries

Throughout this paper we assume a general familiarity with the concepts of phase
transitions in combinatorial problems [20], random structures [9], and proof complex-
ity [4]. We assume more detailed familiarity with certain fundamental results on sharp
thresholds [5,11,14], and we make use of some of the methods associated with those
results.

Two models arising in the theory of random structures are:

– The constant probability model �(n, p). A random string of bits X ∈ �(n, p) is
obtained by independently setting each bit of X to 1 with probability p, and the rest
to 0.

– The counting model �(n, m). A random string X ∈ �(n, m) is obtained by setting m

bits of X, chosen uniformly at random, to 1 and the rest to 0.

For the following purposes, let us work within the constant probability model. Con-
sider a property A that is monotonically increasing, in that if A holds for a given string of
bits X, then changing any of these bits from 0 to 1 preserves property A. For any ε > 0,
let pε = pε(n) be the canonical probability such that ProbX∈�(n,pε(n))[X satisfies A] = ε,
where pε increases monotonically with ε. Sharp thresholds are those for which the func-
tion has a “sudden jump” from value 0 to 1:

Definition 1. Property A has a sharp threshold iff for every 0 < ε < 1/2, we have

lim
n→∞

p1−ε(n) − pε(n)

p1/2(n)
= 0.

A has a coarse threshold if for some ε > 0 it holds that

lim inf
n→∞

p1−ε(n) − pε(n)

p1/2(n)
> 0.

We will use the model of random constraint satisfaction from Molloy [22]:

Definition 2. Let D = {0, 1, . . . , t − 1}, t � 2, be a fixed set. Consider all 2tk − 1 pos-
sible nonempty sets of k-ary constraint templates (relations) with values taken from D.
Let C be such a nonempty set of constraint templates.

A random formula φ ∈ CSP(C) is a set of constraints specified under the counting
model by the following procedure:

1. Select, uniformly at random and with replacement, m hyperedges of the complete
k-uniform hypergraph on n variables.
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2. For each hyperedge, choose a random ordering of the variables involved in it. Choose
a random constraint template from C and apply it to the list of (ordered) variables.

We use the notation SAT(C) (instead of CSP(C)) when t = 2.

For an instance � ∈ CSP(C), we denote by Var(�) the set of variables that actually
appear in �, and by opt(�) the number of constraints left unsatisfied by an optimal
assignment for �.

Just as in random graphs [9], under fairly liberal conditions one can use the con-
stant probability model instead of the counting model from the previous definition.
The interesting range of the parameter m is when the ratio m/n is a constant c called
the constraint density. The original investigation of the order of the phase transition in
k-SAT used an order parameter called the backbone,

B(�) = {
x ∈ Var(�) | ∃W ∈ {x, x̄}: opt(� ∪ W) > opt(�)

}
, (1)

or more precisely the backbone fraction

fB(�) = |B(�)|
n

. (2)

Bollobás et al. [10] have investigated the order of the phase transition in k-SAT (for
k = 2) under a different order parameter, a “monotonic version” of the backbone called
the spine

S(�) = {
x ∈ Var(�) | ∃W ∈ {x, x̄}, � ⊆ �: � ∈ SAT, � ∧ W ∈ SAT

}
. (3)

Here, “∈ SAT” means “is satisfiable” and “∈ SAT” means “is unsatisfiable”.
The corresponding version of equation (2) is

fS(�) = |S(�)|
n

. (4)

They showed that random 2-SAT has a continuous (second-order) phase transition:
the size of fS approaches zero w.h.p. (as n → ∞) for constraint density c < c2-SAT = 1,
and is continuous at c = c2-SAT. By contrast, nonrigorous arguments from statistical
mechanics [24] imply that for 3-SAT the parameter fB jumps discontinuously from zero
to a positive value at the transition point c = c3-SAT (a first-order phase transition).

3. How to define the backbone/spine for random CSP (and beyond)

We would like to extend the concepts of backbone and spine to general constraint
satisfaction problems. The extended definitions must preserve as many of the properties
of the backbone/spine as possible.

Certain differences between the case of random k-SAT and the general case force
us to employ an alternative definition of the backbone/spine. The most obvious is that
equation (3) involves negations of variables, unlike Molloy’s model. Also, these defini-
tions are inadequate for problems whose solution space presents a relabeling symmetry,
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such as the case of graph coloring where the set of (optimal) colorings is closed under
permutations of the colors. Due to this symmetry, no variable can be “frozen” to a fixed
value as in equation (1).

We therefore define the backbone/spine of a random instance of CSP(C) in a
slightly different manner. Let Ĉ be the set of constraints obtained by applying the
constraint templates in C to all ordered lists of k variables chosen from the set of all
n variables.

Definition 3.

B(�) = {
x ∈ Var(�) | ∃C ∈ Ĉ: x ∈ C, opt(� ∪ C) > opt(�)

}
,

S(�) = {
x ∈ Var(�) | ∃C ∈ Ĉ, � ⊆ �: x ∈ C, � ∈ CSP, � ∪ C ∈ CSP

}
.

For k-CNF formulas whose (original) backbone/spine contains at least three liter-
als, a variable x is in the (new version of the) backbone/spine if and only if either x or
x̄ were present in the old version. In particular the new definition does not change the
order of the phase transition of random k-SAT.

Alternatively, in studying 3-colorability (3-COL) of random graphs G = (V , E),
Culberson and Gent [13] defined the spine of a colorable graph G to be the set of vertex
pairs (x, y) ∈ V 2 that get assigned the same color in all colorings of G.

Following up on the idea of defining the backbone and spine in terms of constraints
rather than variables, and by analogy with the definition in [10], we can extend the
definition of the spine to general graphs1 by

S(G) = {
(x, y) ∈ V 2 | ∃H ⊆ G: H ∈ 3-COL, H ∪ (x, y) ∈ 3-COL

}
. (5)

We can further extend these definitions to all random constraint satisfaction prob-
lems CSP(C):

Definition 4.

BC(�) = {
C ∈ Ĉ | opt(� ∪ C) > opt(�)

}
,

SC(�) = {
C ∈ Ĉ | ∃� ⊆ �: � ∈ CSP, � ∪ C ∈ CSP

}
.

Similarly, we can define the backbone/spine fraction by

fBC
(�) = |BC(�)|

|Ĉ| ,

and

fSC
(�) = |SC(�)|

|Ĉ| .

1 Culberson and Gent employ an “effective” version of the spine they call frozen development that is more
amenable to experimental analysis. Frozen development is a subset of the spine as defined in equation (5).
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We will refer to these concepts as the constraint-based backbone/spine (fractions),
as opposed to the previously defined variable-based quantities. The two are clearly
related. For instance, one can easily show that

B(�) =
⋃

C∈BC(�)

Var(C),

where Var(C) represents all variables appearing in constraint C alone. It is also clear that
|BC(�)| = O(|B(�)|k) and similarly for the spine. Since |Ĉ| = �(nk), it follows that
the continuity of fB or fS implies the continuity of fBC

or fSC
. However, the converse

is not in general true, and so the two backbone/spine fractions do not necessarily behave
in the same way.

Given the two types of definitions, which should we choose? The answer depends
on the problem, as well as on the issue we wish to address. For instance, in the statistical
mechanics analysis of combinatorial problems, the presumably “correct” definition of
the backbone emerges from the analysis undertaken in [24] for random k-SAT. But since
we are interested in a combinatorial definition, with no physics considerations in mind,
the only principled way to choose between the two types of order parameters (one based
on variables, the other based on constraints) is based on the class of algorithms we
are concerned with. In the case of random constraint satisfaction problems and DPLL
algorithms, it is variables that get assigned values, so definition 3 is preferred. On the
other hand, constraint-based definitions can make sense for problems that share some
characteristics with random 3-COL (i.e., binary constraint satisfaction problems, and
problems with built-in symmetries of the solution space). In a later section we will
see an example, the case of graph bipartition, where the constraint-based backbone and
spine seem to behave differently. (Whether one can come with a natural example of this
phenomenon for the variable-based backbone is an interesting open problem.)

4. Spine discontinuity and resolution complexity of random CSP

In this section we will study the continuity of the spine-based order parameter
fS for Boolean random constraint satisfaction, or satisfiability, problems. The kind of
continuous/discontinuous behavior we are looking for is formalized by the following
definition (a similar one can be given for the constraint-based versions of the order pa-
rameter):

Definition 5. Let C be such that SAT(C) has a sharp threshold. Problem SAT(C) has a
discontinuous spine if there exists η > 0 such that for every sequence m = m(n) we
have

lim
n→∞ Prob

m=m(n)
[� ∈ SAT] = 0 ⇒ lim

n→∞ Prob
m=m(n)

[
fS(�) � η

] = 1. (6)
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If, on the other hand, for every ε > 0 there exists a constant c = c(ε) such that the map
ε → c(ε) is monotonically increasing and

lim
n→∞ Prob

m=c(ε)n
[� ∈ SAT] = 0 and lim

n→∞ Prob
m=c(ε)n

[
fS(�) � ε

] = 0 (7)

we say that SAT(C) has a continuous spine.

We now give a simple observation that will be the basis for identifying discontinu-
ities of the spine:

Proposition 1. Let � be a minimally unsatisfiable formula, and let x be a literal that
appears in �. Then, by definition 3, x ∈ S(�).

Proof. There exists C ∈ � such that x ∈ C. But � \ C is satisfiable and (� \ C) ∪ C

is not, thus x ∈ S(�). �

Corollary 1. k-SAT, k � 3, has a discontinuous spine.

Proof. To show a discontinuous spine it is sufficient to show that a random unsatis-
fiable formula contains w.h.p. a minimally unsatisfiable subformula involving a linear
number of literals. In the Chvátal–Szemerédi proof [11] that w.h.p. random k-SAT has
exponential resolution size for k � 3, the claim is implicitly proved. �

Definition 6. The width of a resolution proof P of the unsatisfiability of a CNF for-
mula F is defined to be the maximum number of literals in any clause that appears in the
proof P .

If � is an instance of SAT(C), denote by Cl(�) the CNF formula obtained by
expressing each constraint of � as a conjunction of clauses (i.e., expressing � in con-
junctive form).

The resolution complexity of an instance � of SAT(C) is defined as the length of
the smallest resolution proof of Cl(�).

A simple observation is that a continuous spine has implications for resolution
complexity:

Theorem 1. Let C be a set of constraint templates such that SAT(C) has a continuous
spine. Then for every constraint density c > limε→0 c(ε), and every ε > 0, random
formulas of constraint density c have w.h.p. resolution complexity O(2εn).

Proof. Because of proposition 1 and the fact that SAT(C) has a continuous spine, for
every ε > 0, minimally unsatisfiable subformulas of a random formula � with constraint
density c(ε) contain w.h.p. at most εn variables. Consider the backtrack tree of the
natural DPLL algorithm that tries to satisfy constraints one at a time on such a minimally
unsatisfiable subformula F . By the usual correspondence between DPLL refutations and
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resolution complexity (e.g., [3]) this yields a resolution proof of the unsatisfiability of �

having size at most 2εn.
Taking ε to be small enough that c(ε) < c, and using the fact that resolution

complexity of a random formula is a monotonically decreasing function of the constraint
density, we get the desired result. �

Let us observe that we have stated the preceding theorem using condition c >

limε→0 c(ε) since we cannot be sure, even for k-SAT, that the phase transition takes
place at a constant value of the constraint density c. In practice one would of course
expect that, for a problem with a continuous spine, there exists a sequence c(ε) as in
definition 5 having the constraint density at the phase transition as its limit.

Definition 7. Denote by |F | the number of constraints that appear in formula F . Define

c∗(F ) = max

{ |H |
|Var(H)| : ∅ �= H ⊆ F

}
.

The next result gives a sufficient condition for a generalized satisfiability problem
to have a discontinuous spine. Interestingly, it is one condition studied in [22].

Theorem 2. Let C be such that SAT(C) has a sharp threshold. If there exists ε > 0 such
that for every minimally unsatisfiable formula F it holds that c∗(F ) > (1 + ε)/(k − 1),
then SAT(C) has a discontinuous spine.

Proof. The proof is similary to that of corollary 1: we will show that w.h.p. a random
formula contains a minimally unsatisfiable subformula containing a linear number of
variables, and apply proposition 1.

To accomplish that, we first recall the following concept from [11]:

Definition 8. Let x, y > 0. A k-uniform hypergraph with n vertices is (x,y)-sparse if
every set of s � xn vertices contains at most ys edges.

We also recall lemma 1 from the same paper.

Lemma 1. Let k, c > 0 and y > 1/(k − 1). Then w.h.p. the random k-uniform hyper-
graph with n vertices and cn edges is (x, y)-sparse, where

x =
(

1

2e

(
y

ce

)y)1/(y(k−1)−1)

. (8)

Let y = (1 + ε)/(k − 1). Directly applying lemma 1, w.h.p. a random k-uniform
hypergraph with cn edges is (x0, y) sparse, for x0 = (1/(2e)(y/(ce))y)1/ε. The criti-
cal observation is then that the existence of a minimally unsatisfiable formula with xn

variables and with c∗(F ) > (1 + ε)/(k − 1) implies that the k-uniform hypergraph as-
sociated with the given formula is not (x, y)-sparse. It follows that any formula with
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fewer than x0n/k constraints (and thus fewer than x0n variables) is satisfiable. There-
fore, any minimally unsatisfiable subformula of random formula � has more than x0n/k

constraints.
To show that such formulas have many variables, we again employ the expansion

of the formula hypergraph given by lemma 1, and infer that all subformulas of size less
than xn of � (in particular, those that are also subformulas of a minimally unsatisfiable
subformula of �) have a linear number of variables. �

One can give an explicitly defined class of satisfiability problems for which the
previous result applies:

Theorem 3. Let k � 2 and let C be such that SAT(C) has a sharp threshold. If no clause
template C ∈ C has (when expressed as a CNF formula) an implicate of length 2 or 1
then

1. For every minimally unsatisfiable formula F , c∗(F ) � 2/(2k − 3). Therefore
SAT(C) satisfies the conditions of the previous theorem, i.e., it has a discontinuous
spine.

2. Moreover, there exists a constant η > 0 such that w.h.p. random instances of SAT(C)

have �(2ηn) resolution complexity.2

The condition in the theorem is violated, as expected, by random 2-SAT. It is also
violated by the random version of the NP-complete problem 1-in-k-SAT. This can be
seen as follows. The problem can be represented as CSP(C), for C a set of 2k con-
straints corresponding to all ways to negate some of the variables, and has a rigorously
determined “2-SAT-like” location of the transition point [1]. However, the formula

C(x1, x2, . . . , xk−1, xk) ∧ C(x̄k, xk+1, . . . , x2k−2, x1)

∧C(x̄1, x2k−1, . . . , x3k−3, x̄k) ∧ C(xk, x3k−2, . . . , x4k−4, x̄1),

where C is the constraint “1-in-k”, is minimally unsatisfiable but has clause/variable
ratio 1/(k − 1) and implicates x̄1 ∨ x̄k and x1 ∨ xk.

Proof of theorem 3. 1. For any real r � 1, formula F and set of clauses G ⊆ F , define
the r-deficiency of G, δr(G) = r|G| − 2|Var(G)|. Also define

δ∗
r (F ) = max

{
δr(G): ∅ �= G ⊆ F

}
. (9)

Definition 9. Let F be a formula, and let C1, C2, . . . , Ci, . . . , Cm be a listing of the
constraints in F .

A variable v is private for constraint Ci if v appears in Ci but in no other constraint.

2 This result subsumes some of the results in [21]. After a preliminary version of this paper was made
available [16], related and technically more sophisticated results were given independently in [23].



G. Istrate et al. / Spines of random constraint satisfaction problems 363

Variable v is free in Ci if v appears in Ci but in no Cj , j < i. Otherwise we say
that v is bound in Ci .

We claim that for any minimally unsatisfiable F , δ∗
2k−3(F ) � 0. Indeed, assume

this is not true. Then there exists F such that

δ2k−3(G) � −1 for all ∅ �= G ⊆ F . (10)

Lemma 2. Let F be a formula for which condition 10 holds. Then there exists an
ordering C1, . . . , C|F | of constraints in F such that each constraint Ci contains at least
k − 2 variables that are free in Ci .

Proof. Denote by vi the number of variables that appear in exactly i constraints of F .
We have

∑
i�1 ivi = k|F |, therefore 2|Var(F )| − v1 � k|F |. This can be rewritten as

v1 � 2|Var(F )| − k|F | > |F |(2k − 3 − k) = (k − 3)|F |, where we use equation (10).
Therefore there exists at least one constraint C in F with at least k − 2 variables that
are private in F , hence necessarily free in F . We set C|F | = C and apply this argument
recursively to F \ C. �

Let us show now that F cannot be minimally unsatisfiable. Construct a satisfying
assignment for F incrementally, so that the partial assignment constructed up to stage j

will satisfy constraints C1, . . . , Cj .
Indeed, suppose we have constructed a partial assignment that satisfies C1, . . . ,Cj−1,

and consider now constraint Cj . At most two of the variables in Cj are bound in Cj .
Since Cj has no implicates of length two or less, no matter what the assignment to these
two variables might have been in the previous stages, one can set the variables that are
free in Cj in a way that satisfies this clause. Iteratively performing this construction
yields a satisfying assignment for F , in contradiction with our assumption that F was
minimally unsatisfiable.

Therefore δ∗
2k−3(F ) � 0, a statement equivalent to our conclusion.

2. To prove the resolution complexity lower bound we use the size-width connec-
tion for resolution complexity obtained in [5]: it is sufficient to prove that there exists
η > 0 such that w.h.p. random instances of SAT(C) having constraint density c have
resolution width at least ηn.

To accomplish this, we use the same strategy as in [5]: define for a unsatisfiable
formula � a measure µ : Clauses → N (where Clauses is the set of all possible disjunc-
tions of literals from Var(�), including the contradictory clause �) such that

(a) for every clause C that appears in Cl(�), µ(C) � 1,

(b) w.h.p. µ(�) is “large”.

(c) Infer that in any refutation there exists a clause C with “medium” µ(C), and

(d) prove that if µ(C) is “medium” than the width of C is “large”.
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As in [5], define

µ(C) = min
{|�|: � ⊆ �, � |= C

}
,

where |= is the logical entailment relation. In particular, µ(�) is the size of the smallest
unsatisfiable subformula of �. µ is subadditive, that is, for every clauses C1 and C2 that
share a variable x appearing with opposite signs in the two clauses,

µ
(
resx(C1, C2)

)
� µ(C1) + µ(C2),

where resx(C1, C2) denotes the clause obtained by applying resolution to clauses C1,
C2 with respect to variable x. It is clear that condition (a) is satisfied. As to (b), the
following is true:

Lemma 3. There exists η1 > 0 such that for any c > 0, w.h.p. µ(�) � η1n, where � is
a random instance of SAT(C) having constraint density c.

Proof. In the proof of theorem 2 we have shown that there exists η0 > 0 such that w.h.p.
any unsatisfiable subformula of a given formula has at least η0n constraints. Therefore
any formula F made up of clauses from the CNF representation of constraints in �, and
which has fewer than η0n clauses, is satisfiable (since it is less tight than the conjunction
of those constraints).

The claim now follows by taking η1 = η0. �

The only (slightly) nontrivial step of the proof, which critically uses the fact that
constraints in C do not have implicates of length one or two, is to prove that clause
implicates of subformulas of “medium” size have “many” variables.

Lemma 4. There exists d > 0 and η2 > 0 such that w.h.p. (when � is a random instance
of SAT(C) having constraint density c) every clause C present in a refutation of Cl(�)

that satisfies dn/2 < µ(C) � dn also satisfies |C| � η2n.

Given a clause C, let � be a subformula of �, having minimal size, such that � |= C.
We claim:

Lemma 5. For every constraint P of � that contains k −2 private variables, at least one
of these variables appears in C.

Proof. Suppose there exists a constraint D of � with at least k − 2 private variables
such that none of its private variables appears in C. Because of the minimality of � there
exists an assignment F that satisfies � \ {D} but does not satisfy D or C. Since D has
no implicates of size two, there exists an assignment G, that differs from F only on the
private variables of D, that satisfies �. But since C does not contain any of the private
variables of D, F coincides with G on variables in C. The conclusion is that G does not
satisfy C, contradicting the fact that � |= C. �
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Now define x(·, ·) to be the function from equation (8) that describes the depen-
dence of x on y and c. For a constant ε > 0 to be determined later, define

d = min

(
inf

{
x

(
2

2k − 3 + ε
, c

) ∣∣∣ c � cSAT(C)

}
, η1

)
.

Since SAT(C) has a sharp threshold, the first term of the minimum expression is, like η1,
strictly greater than zero. Therefore, d > 0.

Lemma 6. There exists constant η2 > 0 such that w.h.p., when � is a random instance
of SAT(C) having constraint density c and W ⊆ � is a formula with at most dn con-
straints, W contains at least η2n constraints each of which has at least k − 2 private
variables.

Proof. To prove lemma 6 we first need:

Lemma 7. Let ε > 0 be a constant. If F is a formula with c∗(F ) � 2/(2k − 3 + ε)

then for every subformula G of F , at least (ε/3)|G| constraints of G have at least k − 2
private variables.

Proof. Indeed, since c∗(G) � 2/(2k − 3 + ε), by an argument similar to the one used
in the proof of lemma 2, v1(G) � (k − 3 + ε)|G|. Since constraints in G have arity k,
at least (ε/3)|G| have more than k − 3 (i.e., at least k − 2) private variables. �

Returning to the proof of lemma 6, choose y = 2/(2k − 3 + ε) in lemma 1 for
ε > 0 a small enough constant. Because of the definition of d, when � is a random
instance of SAT(C) having constraint density c, w.h.p. formula � is (d, y) sparse. Since
|W | � dn, this easily implies the fact that

c∗(W) � 2

2k − 3 + ε
.

Lemma 6 follows by applying lemma 7 to formula W with η2 = ε/3. Applying
this result and lemma 5 to formula � also concludes the proof of lemma 4. �

The proof of item 2 of theorem 3 now follows: since for any clause K in Cl(�) we
have µ(K) = 1, since µ(�) > η1n and since 0 < d � η1, there indeed exists a clause C

such that

µ(C) ∈
[
dn

2
, dn

]
. (11)

Indeed, let C ′ be a clause in the resolution refutation of � minimal with the proper-
ty that µ(C ′) > dn. Then at least one clause C of the two involved in deriving C ′ satisfies
equation (11). Applying lemma 4 we infer that the width of C is at least η2n. Using the
size-width connection from [5] completes the proof of item 2 of theorem 3. �
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4.1. Threshold location and discontinuous spines

Molloy [22] has studied threshold properties of random constraint satisfaction
problems, describing a technical property of the constraint set (called very well-
behavedness) that is necessary for the existence of a sharp threshold. In [17] we
have shown that Molloy’s well-behavedness condition is actually necessary and suffi-
cient for boolean constraints (this has been independently proved by Creignou and
Daudé [12]). Thus we have completely characterized sets C for which SAT(C) has a
sharp threshold.

The well-behavedness condition has implication for the clause/variable ratio
of minimally unsatisfiable formulas: it has to be larger than 1/(k − 1). Furthermore,
Molloy has shown that if the density of minimally unsatisfiable formulas is bounded
away from 1/(k − 1) (i.e., it satisfies the conditions of theorem 2) then the location of
the transition is strictly larger than 1/(k(k − 1)).

We have seen that the same density condition is sufficient to guarantee the discon-
tinuity of the spine and exponential resolution complexity. A natural question therefore
arises: is it possible to relate the continuity (or discontinuity) of the spine to the location
of the phase transition?

At first this does not seem to be possible. We have already encountered two prob-
lems that fail to satisfy the sufficient condition for a discontinuous spine: random 2-SAT,
for which the transition has been proven to be of second order [10], and random 1-in-k-
SAT, for which a similar result holds [1]. Both have a threshold location strictly higher
than Molloy’s lower bound of 1/(k(k − 1)). However, the most natural specification of
the random model for the two problems involves applying constraints on both variables
and their negations. For both problems the actual location of the threshold is twice the
value given by [22, theorem 3], at clause/variable ratio 2/(k(k − 1)). This suggests that
the following tempting intuitive picture might be accurate, at least in a more restricted
setting:

1. Problems with a continuous spine are “2-SAT-like”, and have a phase transition at
constraint density ccont

k = 2/(k(k − 1)).

2. Problems with a discontinuous spine have a phase transition located at constraint
density c > ccont

k .

To obtain results that partly support the intuition above, we have to modify the
random model from definition 2 to allow negated variables.

Definition 10. Let C be a set of constraint templates. The closure of C, denoted C, is the
set of constraints

C = {
C

(
x

ε1
1 , . . . , x

εk

k

) | C ∈ C and ε1, . . . , εk ∈ {±1}}, (12)

where for a variable xi we define x1
i := xi , x−1

i := x̄i .
Set C is good if |C| = |C|2k , that is all elements on the right-hand side of equa-

tion (12) are distinct.
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Definition 11. Let C be a good set of constraint templates. Denote by SAT(neg)(C) the
version of SAT(C) that generates a random formula by the following process:

1. Select, uniformly at random and with replacement, m hyperedges of the complete
k-uniform hypergraph on n variables.

2. For each hyperedge e, choose a random ordering oe of the variables involved in it.

3. Independently with probability 1/2 negate each variable appearing in oe.

4. Choose a random constraint template from C and apply it to the ordered list of literals
in oe.

It is easy to see that problems such as k-SAT and 1-in-k-SAT can be expressed
using the framework of definition 11. The following result shows that the intuition con-
necting the discontinuity of the spine, resolution complexity and the location of the phase
transition does indeed have merit: a strenghtening of the condition guaranteeing the ex-
istence of a discontinuous spine and exponential resolution complexity also implies that
the satisfiability threshold is located at a value higher than ccont

k :

Theorem 4. Let C be a good set such that

1. SAT(neg)(C) has a sharp threshold (the result in [17] can be easily adapted to com-
pletely characterize such sets C).

2. There exists ε > 0 such that, for every minimally unsatisfiable formula F whose
constraints are drawn from template set C, the ratio of the number of constraints in F

to the number of distinct literals (variables and negated variables) appearing in F is
at least (1 + ε)/(k − 1).

Then

1. There is a constant δ > 0 such that random instances of SAT(neg)(C) with m = cn,
where c � (2/(k(k − 1)))(1 + δ), are satisfiable with probability 1 − o(1).

2. Problem SAT(neg)(C) has a discontinuous spine and exponential resolution complex-
ity.

Proof. 1. Since SAT(neg)(C) has a sharp threshold, it is sufficient to show that there
exists a fixed constant η > 0 such that the probability that a random formula is satisfiable
is at least η.

Suppose m = cn with c = (2/(k(k −1)))(1+ δ), with δ > 0 small enough. Define
random model SAT(neg)

2 (C) that is a variant of SAT(neg)(C) as follows:

(a) Choose a random k-uniform hypergraph H with m edges on the vertex set (of cardi-
nality 2n) consisting of variables and negated variables.

(b) For every edge e ∈ H create a random permutation oe of its elements.

(c) Apply a random constraint template in C to variables in the ordered list oe.
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This model differs from the random model SAT(neg)(C) in that it allows for con-
straints that include a k-tuple of literals involving two opposite literals.

Define W to be the event that formula � contains some clause involving two op-
posite literals. It is easy to see that the expected number of such clauses in a random
formula � is constant. Therefore, with positive probability λ > 0 in a random formula
generated according to SAT(neg)

2 (C), the bad event W will not happen.
Let Z denote the event that a random formula with m = cn clauses generated

according to the random model SAT(neg)

2 (C) is satisfiable.
Then the probability that a random formula in SAT(neg)(C) is satisfiable is equal to

Prob[Z | W ]. To show that this is bounded away from zero it is enough to prove that
Prob[Z] = 1 − o(1).

The k-uniform hypergraph on the 2n nodes (variables and their negations) corre-
sponding to choosing a random instance of SAT(neg)

2 (C) is a random k-uniform hyper-
graph. Thus we want to show that a formula generated by first choosing such a random
k-uniform hypergraph H , and then applying a random constraint template from C on the
given literals is w.h.p. satisfiable.

The proof of this is entirely similar to a step in the proof of Molloy’s theorem 3
in [22], and amounts to showing that w.h.p. the hypergraph H does not contain any
hypergraph of high density, corresponding to the fact that minimally unsatisfiable sub-
formulas have clause/variable density at least (1/(k − 1))(1 + ε). Rather than repeating
an argument that is presented in detail in that paper, we refer the reader to [22].

2. Since C is good, one can simply apply theorem 2 to SAT(C), which is equivalent
to problem SAT(neg)(C). �

5. Beyond random satisfiability: comparing the behavior of the backbone and
spine

In this section we investigate empirically the continuity of the backbone for two
graph problems, random three coloring (3-COL) and the graph bipartition problem
(GBP). Both can be phrased as decision or as optimization problems, in the same manner
as k-SAT and MAX-k-SAT.

We consider a large number of instances of random graphs, of sizes up to n =
1024 and over a range of mean degree values near the threshold. For each instance we
determine the backbone fraction f .

Culberson and Gent [13] have shown experimentally that the 3-COL spine frac-
tion fSC

, as defined in definition 4, exhibits a discontinuous transition. To be consistent
with this study, we use the backbone fraction fBC

from the same definition. We employ
a rapid heuristic called extremal optimization [7]. Although an incomplete procedure,
numerical studies [8] as well as testbed comparisons with an exact algorithm [27], have
shown that extremal optimization yields an excellent approximation of fBC

around the
critical region (see [7] for further discussions, that, we believe, convincingly support this
assertion). Figure 1 shows fBC

as a function of mean degree.
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Figure 1. Plot of the estimated constraint-based backbone fraction fBC
on random graphs, as a function

of mean degree c. For 3-COL, the systematic error based on benchmark comparisons with random graphs
is negligible compared to the statistical error bars; for GBP, fBC

is found by exact enumeration. The
thresholds c ≈ 4.70 for 3-COL [28] and c = 2 ln 2 for GBP are shown by dashed lines.

Culberson and Gent have speculated that at the 3-COL threshold, although their
spine is discontinuous, the backbone might be continuous. The results in figure 1(a)
suggest otherwise. For 3-COL, fBC

does not appear to vanish above the threshold, indi-
cating a discontinuous large n backbone [8].

We next study the graph bipartion problem (GBP):

Definition 12. GBP is the following decision problem. Given a (not necessarily con-
nected) graph G with n vertices, n being an even number, determine whether it can be
partitioned into two edge-disjoint sets having n/2 vertices each.

This problem cannot, strictly speaking, be cast in the setup of random constraint
satisfaction problems from definition 2, since not every partition of vertices of G is
allowed. It can be cast to a satisfiability problem (with variables associated to nodes,
values associated to each partition and constraint “x = y” associated to the edge between
the corresponding vertices) but we must add the additional requirement that all satisfying
assignments contain an equal number of ones and zeros. Thus the complexity-theoretic
observations of section 4 do not automatically apply to it. We can, however, give a
“DPLL-like” class of algorithms for GBP, so the the hope of obtaining results similar to
the previous ones is not so far-fetched.

Let us investigate the continuity of the backbone/spine under the model in def-
inition 4. It is easy to see that the constraint-based spine SC(G) of a GBP instance G

contains all edges belonging to a connected component of size larger than n/2. Since the
GBP threshold takes place where the giant component becomes larger than n/2, fSC

is
discontinuous there. On the other hand, the backbone fraction fBC

(figure 1(b)) appears
to remain continuous, vanishing at large n on both sides of the threshold.

We have noted earlier that the discontinuity of fBC
is a stronger property than the

discontinuity of fB . Thus for 3-COL it follows that the variable-based backbone is
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discontinuous as well. By contrast, it is not clear for GBP whether the variable-based
backbone is continuous: our preliminary experimental evidence is as yet inconclusive.

The results in figure 1(b) suggest that the spine and the backbone can behave differ-
ently at the threshold, though they do not yet address the question of whether the spine’s
discontinuity really has computational implications for the decision problem’s complex-
ity. After all, unlike 3-COL, GBP can easily be solved in polynomial time by dynamic
programming. This situation is similar to that of XOR-SAT, where a polynomial al-
gorithm exists but the complexity of resolution proofs/DPLL algorithms is exponential.
The class of “DPLL-like” algorithms that can solve GBP can no longer be simulated in
a straightforward manner by resolution proofs, however it can be simulated using proof
systems Res(k) that are extensions of resolution [19]. Some of the hardness results for
resolution extend to these more powerful proof systems, and in [18] we investigate the
extent to which our present results apply to this class of proof systems. These prelimi-
nary results imply that, indeed, the discontinuity of the spine does have computational
implications for GBP.

6. Discussion

We have shown that the existence of a discontinuous spine in a random satisfiability
problem is often correlated with a 2�(n) peak in the complexity of resolution/DPLL
algorithms at the transition point. The underlying reason is that the two phenomena (the
jump in the order parameter and the resolution complexity lower bound) have common
causes.

The example of random k-XOR-SAT shows that a general connection between a
first-order phase transition and the complexity of the underlying decision problems is
hopeless: Ricci-Tersenghi et al. [29] have presented a non-rigorous argument using the
replica method that shows that this problem has a first-order phase transition, and the
following weaker result is a direct consequence of theorem 3:

Proposition 2. Random k-XOR-SAT, k � 3, has a discontinuous spine.

However, our results, as well as work in progress mentioned above, suggest that the
continuity/discontinuity of the spine is a predictor for the complexity of the restricted
classes of decision algorithms that can be simulated by “resolution-like” proof systems.
Furthermore, experimental evidence in the previous section suggests that the backbone
and the spine do not always behave similarly. Our analysis indicates that the spine,
rather than the backbone, is the order parameter to consider in studying the complexity
of combinatorial problems.
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