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Abstract

We propose a coloring algorithm for sparse random graphs

generated by the geographical threshold graph (GTG)

model, a generalization of random geometric graphs (RGG).

In a GTG, nodes are distributed in a Euclidean space, and

edges are assigned according to a threshold function involv-

ing the distance between nodes as well as randomly chosen

node weights. The motivation for analyzing this model is

that many real networks (e.g., wireless networks, the Inter-

net, etc.) need to be studied by using a “richer” stochastic

model (which in this case includes both a distance between

nodes and weights on the nodes). Here, we analyze the GTG

coloring algorithm together with the graph’s clique number,

showing formally that in spite of the differences in structure

between GTG and RGG, the asymptotic behavior of the

chromatic number is identical: χ = ln n
ln ln n

(1+ o(1)). Finally,

we consider the leading corrections to this expression, again

using the coloring algorithm and clique number to provide

bounds on the chromatic number. We show that the gap be-

tween the lower and upper bound is within C ln n/(ln ln n)2,

and specify the constant C.

1 Introduction

Numerous approaches have been proposed in recent
years to study the structure of large real-world techno-
logical and social networks, and to optimize processes
on these networks. A particularly fertile approach has
been to consider the network as an instance of an ensem-
ble, arising from a suitable random generative model.
One straightforward example is the random geometric
graphs (RGG) model, where nodes are placed uniformly
at random in a Euclidean space and edges are placed be-
tween any two nodes within a threshold distance. This
has the advantage of describing many aspects of systems
such as sensor networks, while avoiding unnecessary de-
tail. Even though geometric correlations in RGGs com-
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plicate the probabilistic analysis of the model, recent
work has clarified many of its structural properties in-
cluding threshold behavior [10, 5, 6], random walk be-
havior [1] and chromatic number [8, 9, 10].

RGGs fail, however, to capture heterogeneity in the
network. Geographical threshold graphs (GTG) aim
at generalizing RGGs, providing this heterogeneity via
a richer stochastic model that nevertheless preserves
much of the simplicity of the RGG model. GTGs assign
to nodes both a location and a weight, which may
represent a quantity such as transmission power in a
wireless network or influence in a social network. Edges
are placed between two nodes if a symmetric function
of their weights and the distance between them exceeds
a certain threshold [4].

Recent work has analyzed structural properties of
GTGs, such as connectivity, clustering coefficient, de-
gree distribution, diameter, existence and absence of the
giant component [3, 2]. These properties are not merely
of theoretical importance, but also play an important
role in applications. In communication networks, con-
nectivity implies the ability to reach all parts of the
network. In packet routing, diameter gives the mini-
mal number of hops needed for transmission between
two arbitrary nodes. And in the case of epidemics, the
existence or absence of the giant component controls
whether the epidemic spreads or is contained.

When considering wireless networks, a natural
quantity to study is the chromatic number. This is
the minimum number of colors needed to color vertices,
such that no two adjacent vertices in the graph receive
the same color. Treating the colors as the different radio
channels or frequencies, the chromatic number gives the
minimal number of channels needed so that neighboring
radios do not interfere with each other. In this paper
we study the asymptotic behavior of the chromatic num-
ber for GTGs with constant mean degree. We propose
a greedy coloring algorithm, and analyze the behavior
of this algorithm along with the graph’s clique number.
This leads to lower and upper bounds on the chromatic
number.

The paper is organized as follows. Section 2 de-
fines the GTG model. Section 3 presents our main
asymptotic result, based on our analysis of the color-
ing algorithm. We show that for graphs G of con-
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stant mean degree, both the clique number ω(G) and
chromatic number χ(G) are with high probability given
by ln n

ln ln n (1 + o(1)). Section 4 analyzes the gap be-
tween lower and upper bounds on the chromatic num-
ber, given respectively by the clique number and the
greedy coloring algorithm. We show that this gap is
within C lnn/(ln lnn)2, and specify the constant C. Fi-
nally, Section 5 concludes with open questions regarding
the chromatic number for sparser and denser GTGs.

2 Geographical Threshold Graph Model

Given random points X1, X2, . . . ∈ [0, 1]2, chosen
iid. uniformly at random, and iid. nonnegative weights
W1,W2, . . ., we construct the random geographical
threshold graphs Gn as follows. Let N =d Po(n) be the
number of the nodes, independent of the Xi and Wi.
Let θn be a given threshold parameter that depends
on the size of the graph n. Then, Gn has vertex set
V (Gn) = {1, . . . , N}, and an edge ij ∈ E(Gn) iff

Wi + Wj

‖Xi −Xj‖2
≥ θn.(2.1)

For technical convenience we identify opposite edges of
[0, 1]2, making it into a torus.

We will specifically analyze the regime of constant
expected degree. If E(Wi) is a constant, then this occurs
when the threshold parameter is linear in the expected
number of nodes, θn = Θ(n). For simplicity we take
θn = n, since if θn = cn for some constant c > 0, the
weights can always be rescaled to Wi := Wi/c.

3 Asymptotic Results

If G is a graph then ω(G) denotes its clique number
and χ(G) its chromatic number. We will show formally
that the clique number and chromatic number of the
geographical threshold graph are essentially the same
as those for a random geometric graph with constant
average degree:

Theorem 3.1. Suppose that Pr(W1 > x) = O(x−α)
for some α > 1. Then

ω(Gn)
lnn/ ln lnn

→ 1 a.s.,

and
χ(Gn)

lnn/ ln lnn
→ 1 a.s.,

as n →∞.

The rest of this section is devoted to proving the
theorem.

3.1 Lower bound. Let ŵ ∈ R be such that
Pr(W1 > ŵ) ≥ 1

2 . Then the probability that Gn con-
tains less than n

3 vertices with weight more than ŵ is
exponentially small. Let G′n be the subgraph of Gn

induced by n
3 of the points with weights ŵ at least.

Note that if i, j ∈ V (G′n) and ‖Xi − Xj‖2 < 2ŵ/n
then certainly ij ∈ E(G′n). Thus G′n (and hence
also Gn) contains the ordinary random geometric graph
G(n

3 ,
√

2ŵ/n) as a subgraph. It follows from computa-
tions done in [7] that

Pr(ω(Gn) < (1− ε) ln n/ ln lnn) = exp
(
− Ω(n)

)
.

3.2 Upper bound. Let us define a “level” Lk as
follows:

L−1 := {i ≤ N : Wi < 1},
Lk := {i ≤ N : 4k ≤ Wi < 4k+1} for k ≥ 0.

Note that the set Xk := {Xi : i ∈ Lk} of the points of
the Poisson process corresponding to level k is in fact a
Poisson process itself with intensity n·(F (4k+1)−F (4k))
(here F denotes the cdf of W1) on the unit square and
intensity 0 elsewhere. Moreover, these Poisson processes
(Xk)k are independent.

For x ∈ R2 let us denote

Mx :=
∞∑

k=−1

|{i ∈ Lk : ‖Xi − x‖ < 100 · 2k+1/
√

n}|,

and let us set
M := max

x∈R2
Mx.

Then we have the following:

Lemma 3.1. The chromatic number satisfies χ(Gn) ≤
M .

Proof. Let us order the vertices by nondecreasing weight
and greedily color them. That is, we first color the
vertex with smallest weight, then the vertex with second
smallest weight and so on; and when we choose a
color for a vertex we always pick the smallest possible
color (ie. the smallest color that does not occur among
the neighbours of the vertex that have already been
colored). We claim that in this way we will never need
more than M colors.

For ease of notation let us assume (wlog.) that
W1 ≤ W2 ≤ . . . ≤ WN . Let us define:

N<(i) := {j < i : ij ∈ E(Gn)}.

Note that if i ∈ Lk and j ∈ N<(i) then ‖Xi − Xj‖ <
2k+2/

√
n. For 1 ≤ i ≤ N let c(i) denote the color that

the algorithm has assigned to vertex i.
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Now let i be an arbitrary vertex. Let us put j0 = i
and let k0 denote the level of i. For each of the colors
1, . . . , c(i) − 1 there is a j ∈ N<(i) with c(j) equal to
that color. Let c1 < c(i) be the largest color for which
there is no j ∈ Lk0 ∩N<(i) with c(j) = c1. It is possible
that no such c1 exists, in which case

c(i) ≤ |Lk0 ∩N<(i)|+ 1
≤ |{j ∈ Lk0 : ‖Xj −Xi‖ < 100 · 2k/

√
n}|

≤ MXi

≤ M.

If c1 exists, then let us pick a j1 ∈ N<(i) \ Lk0 with
c(j1) = c1. Let k1 denote the level of j1. All colors
1, . . . , c1 − 1 must occur in N<(j1). Let c2 < c1 be the
largest color for which there is no j ∈ Lk1 ∩N<(j1) with
c(j) = c2. It is possible that no such c2 exists, in which
case

c(i) ≤ |Lk0 ∩N<(i)|+ |Lk1 ∩N<(j1)|+ 2
≤ |{j ∈ Lk0 : ‖Xj −Xj1‖ < 100 · 2k0/

√
n}|

+ |{j ∈ Lk1 : ‖Xi −Xj1‖ < 100 · 2k1/
√

n}|
≤ MXj1

≤ M.

Here the first line follows from the fact that each color
≤ c(i) must either occur as the color of i or j1 or
of a neighbour of i of level k0 or as the color of a
neighbour of j1 of level k1; and for the second line
we have used the triangular inequality, and the fact
that ‖Xi − Xj1‖ < 2k0+2/

√
n and that ‖Xj − Xj1‖ <

2k1+2/
√

n if j ∈ N<(j1) ∩ Lk1 .
Now suppose that j1 > . . . > jm and k1 > . . . > km

have been defined in such a way that, for p = 0, . . . ,m,
we have jp+1 ∈ Lkp

∩ N<(jp) and c(jp+1) < c(jp) is
the largest color that does not occur in {c(j) : j ∈
N<(jp) ∩Lkp

}. Let cm+1 be the largest color such that
there is no j ∈ N<(jm) ∩ Lkm

with c(j) = cm+1. If no
such cm+1 exists, then

c(i) ≤
∑m

p=0 |Lkp
∩N<(jp)|+ m + 1

≤
∑m

p=0 |{j ∈ Lkp
: ‖Xj −Xjm

‖ < 100 · 2kp/
√

n}|
≤ MXjm

≤ M.

The first line follows because necessarily {1, . . . , cm −
1} ⊆ {c(j) : j ∈ N<(jm) ∩ Lkm

} and c(jm) = cm,
{cm +1, . . . , cm−1−1} ⊆ {c(j) : j ∈ N<(jm−1)∩Lkm−1}
and c(jm−1) = cm−1, and so on. The second line follows
because, by the triangle inequality:

‖Xjp
−Xjm

‖ ≤
m−1∑
q=p

‖Xjq
−Xjq+1‖

≤ 2√
n

m−1∑
q=p

2kq+1

< 2kp+3/
√

n,

for all 1 ≤ p ≤ m. And hence, for any j ∈ N<(jp)∩Lkp
,

we have

‖Xj −Xjm
‖ ≤ ‖Xjp

−Xjm
‖+ ‖Xj −Xjp

‖
≤ (2kp+3 + 2kp+2)/

√
n

< 100 · 2kp/
√

n.

If cm+1 exists then we can choose jm+1 ∈ N<(jm)\Lkm

such that c(jm+1) = cm+1 and set km+1 equal to the
level of jm+1, and continue by attempting to pick a
cm+2. It is clear that the process of picking new cm’s
cannot continue indefinitely (certainly there can be no
more than N steps), so we can conclude that c(i) ≤ M .
Since the vertex i was arbitrary, the claim follows.

To finish the proof of the theorem it now suffices to
prove the following lemma:

Lemma 3.2. If Pr(W1 > x) = O(x−α) for some α > 1
then

lim sup
n→∞

M

lnn/ ln lnn
≤ 1 a.s.

Proof. Let us set

M ′
x :=

∞∑
k=−1

|{i ∈ Lk : ‖Xi − x‖ < 200 · 2k+1/
√

n}|,

and note that if A := {( a√
n
, b√

n
) : 0 ≤ a, b ≤

√
n} where

a and b are integers, then

M ≤ max
x∈A

M ′
x.(3.2)

Let x ∈ R2 be arbitrary and note that M ′
x=d

∑∞
k=−1 Zk,

where the Zk are independent Poisson random variables,
and E(Zk) ≤ π(200)2 ·4k+1 ·Pr(W1 ≥ 4k) = O(4k(1−α)).
So in particular M ′

x is itself Poisson with a mean that
is bounded above by some constant, µ say. Using a well
known bound (see for instance [7]) we see that

Pr(M ′
x > (1 + ε) ln n/ ln lnn)(3.3)

≤
(

eµ

(1 + ε) ln n/ ln lnn

)(1+ε) ln n/ ln ln n

= exp
(
− (1 + ε + o(1)) lnn

)
.

Hence, by Eq. (3.2), (by applying the Union bound)

(3.4)

Pr
(
M > (1 + ε) ln n/ ln lnn

)
≤ ne−(1+ε+o(1)) ln n

≤ n−
ε
2 .

This shows that M/(lnn/ ln lnn) is upper bounded
by 1 + ε, whp. To prove an almost sure convergence
result, it is possible to adapt a “subsequence trick”
from [10], page 123.

13 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



4 Mind the Gap

In this section we analyze the gap between lower and up-
per bounds on the chromatic number, given respectively
by the clique number (Subsection 4.1) and the greedy
coloring algorithm (Subsection 4.2). In the Subsec-
tion 4.3 we show that this gap is within C lnn/(ln lnn)2,
and specify the constant C.

4.1 Lower Bound. Informally, we divide the space
[0, 1]2 into a number of disjoint balls. Then, a clique
number of nodes within an arbitrarily chosen ball will
give us a lower bound on the chromatic number of
the entire geographical threshold graph within [0, 1]2.
Furthermore, the number of the balls, that is, how we
tessellate the space [0, 1]2, is a parameter that we discuss
later. Formally, the argument is the following.

For some threshold weight w0, let α be defined
by Pr(W ≤ w0) = α. We will appropriately choose
constants w0 and α later. Let us define a radius
r2
0 = w0/(2θn). We consider b = 1/(2r0)2 disjoint balls

with radii r0, and call these balls Bi. For convenience,
tile the square [0, 1]2 into b = 1/(2r0)2 sub-squares
of the size 2r0 × 2r0, and within each of the squares
inscribe a ball of radius r0. The number of nodes
within Bi is given by Poisson distribution Po(nr2

0π),
while the number of nodes with weights ≥ w0 within
Bi is given by Po((1− α)nr2

0π). For convenience we let
λ = (1− α)nr2

0π. Let us note that for θn = n it follows
b = 1

4r2
0

= θn

2w0
= n

2w0
(this is Θ(n)) and λ = π

2 (1−α)w0

(this is Θ(1)).
Let us now consider only nodes with weights W ≥

w0, that belong to the balls Bi. All nodes with weights
W ≥ w0 within a ball Bi form a clique, since each pair
within Bi satisfies the connectivity relation Eq. (2.1).
Let k be a positive integer to be specified later. The
number of nodes within Bi satisfies

Pr(Po(λ) ≥ k) ≥ e−λ λk

k!
,(4.5)

and we denote p := e−λλk/k!. For Ii being an indicator
of the event {Po(λ) ≥ k}, we have Pr(Ii = 1) ≥ p. Let
us define J =

∑b
i=1 Ii. We will shortly choose k and

show that for this choice of k, Pr(J = 0) → 0. First,
J = 0 iff all Ii are 0. Second, the indicators Ii are
mutually independent, since the balls Bi are mutually
disjoint. Then it follows, Pr(∩Ic

i ) = Pr(Ic
i )b ≤ (1 −

p)b = exp(ln(1 − p)b). We already have b = Θ(n).
We will choose k so that p = lnn/n, which implies
Pr(J > 0) ≥ 1− exp(ln(1− p)b) = 1− exp(−Θ(lnn)) =
1− n−Θ(1). Thus, we must solve the following equation
in k

e−λ λk

k!
b = Θ(lnn).(4.6)

By taking the logarithm, Eq. (4.6) is equivalent to

−λ + k lnλ− ln k! + ln b = ln(Θ(lnn)).(4.7)

The Stirling’s Formula satisfies k! =
√

2πkk+ 1
2 e−k+ α

12k

for some α ∈ (0, 1), and applying the logarithm on k!
it follows ln k! = 1

2 ln 2πk + k(ln k − 1) + O(1/k). Now,
Eq.(4.7) is equivalent to

k(1 + lnλ) + lnn = (k +
1
2
) ln k + λ +

1
2

ln 2π

+ ln(w0/2) + O(1/k) + Θ(ln lnn).

Calling Λ = 1 + lnλ and γ = λ + 1
2 ln 2π + ln(w0/2) +

O(1/k) + Θ(ln lnn) we obtain the new equivalent equa-
tion in k

k =
lnn− 1

2 ln k − γ

ln k − Λ
.(4.8)

Let us introduce the new variables y = k/eΛ and
x = (lnn− Λ/2− γ)/eΛ and the constant η = 1/(2eΛ).
Then Eq. (4.8) is equivalent to

y =
x

ln y
− η.(4.9)

For given x and η, Eq. (4.9) has the unique solution in
y. It can be easily verified that the solution is given by

y =
x

lnx

(
1 +

ln lnx

lnx
(1 + o(1))

)
.(4.10)

Let us call ∆ = Λ/2 + γ. Since ∆ = o(lnn), lnx can be
expressed as

lnx = ln(e−Λ(lnn−∆))(4.11)
= −Λ + ln lnn + ln(1−∆/ lnn))
= ln lnn− Λ− o(1).

Since Λ is constant, it follows

ln lnx = ln
(

ln lnn− Λ− o(1)
)

(4.12)

= ln ln lnn + o(1),

and furthermore

ln lnx

lnx
=

ln ln lnn + o(1)
ln lnn− Λ + o(1)

(4.13)

=
ln ln lnn

ln lnn
(1 + o(1)).

Now, Eq. (4.9) is equivalent to

k

eΛ
=

1
eΛ

lnn−∆
ln y

− 1
2eΛ

k =
lnn−∆

ln y
− 1

2
.(4.14)
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To proceed, let us calculate ln y

ln y = lnx− ln lnx + ln
(
1 +

ln lnx

lnx
(1 + o(1))

)
= lnx− ln lnx + o(1)
= ln lnn− ln ln lnn− Λ + o(1).

Plugging the last result into Eq. (4.14), the expression
for k finally follows

k =
lnn−∆

ln lnn− ln ln lnn− Λ + o(1)
− 1

2

=
lnn

ln lnn

(
1 +

ln ln lnn + Λ + o(1)
ln lnn

)
− 1

2

=
lnn

ln lnn

(
1 +

ln ln lnn + Λ + o(1)
ln lnn

)
.

Thus, there is a clique of the size at least k within
some ball Bi, with probability ≥ 1 − n−Θ(1). Since
k ≤ ω(Gn) ≤ χ(Gn), it follows

lnn

ln lnn

(
1 +

ln ln lnn + Λ + o(1)
ln lnn

)
≤ χ(Gn).

4.2 Upper Bound. In this subsection we derive an
upper bound on the chromatic number, given by the
greedy coloring algorithm in Section 3. Let us consider
the inequality (3.3).

Pr
(
M ′

x > (1 + ε) ln n/ ln lnn
)

≤
(

eµ

(1 + ε) ln n/ ln lnn

)(1+ε) ln n/ ln ln n

= exp
{(

B − ln
(
(1 + ε)

lnn

ln lnn

))
(1 + ε)

lnn

ln lnn

}
= exp

{
lnn

(B(1 + ε)
ln lnn

−

−
(
ln(1 + ε) + ln lnn− ln ln lnn

) (1 + ε)
ln lnn

)}
= exp

{
lnn

(B(1 + ε)
ln lnn

− (1 + ε) ln(1 + ε)
lnn

−

− (1 + ε) + (1 + ε)
ln ln lnn

ln lnn

)}
= exp

{
lnn

( B

ln lnn
+

Bε

ln lnn
− ε(1 + o(1))

ln lnn
−

− 1− ε +
ln ln lnn

ln lnn
+ ε

ln ln lnn

ln lnn

)}
,

where B = ln(µe). Let us choose ε to be

ε =
ln ln lnn + s

ln lnn
,(4.15)

then it follows that

Pr(M ′
x > (1 + ε) ln n/ ln lnn) ≤

≤ exp
{

lnn
(
− 1 +

B − s

ln lnn
+

+
ε

ln lnn

(
ln ln lnn + B − 1− o(1)

)}
= exp

{
lnn

(
− 1 +

B − s + o(1)
ln lnn

)}
.

Hence, by Eq. (3.4) and by taking s ≥ B + δ it follows
that Pr(M < (1 + ε) ln n/ ln lnn) with probability
≥ 1−e−

ln n
ln ln n (δ−o(1)). Thus, for any positive δ, with high

probability, that is probability ≥ 1−e−
ln n

ln ln n (δ−o(1)), the
chromatic number satisfies

χ(Gn) ≤ lnn

ln lnn

(
1 +

ln ln lnn + B + δ + o(1)
ln lnn

)
.

4.3 Comparison of Bounds. Let us now optimize
the constants Λ = 1+ lnλ and B = ln(eµ) = 1 + lnµ to
minimize the gap between lower and upper bounds on
χ(Gn). We define s1 = max Λ and s2 = min B. Thus

s1 = 1 + max lnλ(4.16)
= 1 + max(1− α)nr2

0π

= 1 + max ln
π

2
n

θn
(1− α)w0

= 1 + ln
π

2
n

θn
+ max ln(1− F (w0))w0

= 1 + ln
π

2
+ ln

(
sup

w0≥0
w0(1− F (w0))

)
,

by using the definition of α = Pr(W ≤ w0).
On the other hand s2 = 1+min lnµ. The conditions

imposed on the weight distribution in Lemma 3.2, are
Pr(W > x) = O(x−α) for some α > 1. Thus,
1−F (4j) = O(4−αj) ≤ D4−αj , for an absolute constant
D, given by D = maxj 4αj(1− F (4j)). Now, we obtain
an upper bound on µ

µ ≤
∞∑

j=−1

E(Zj)

≤ π(200)2
∞∑

j=−1

4j+1(1− F (4j))

≤ π(200)2
∞∑

j=−1

4j+1D4−αj

= π(200)24D
∞∑

j=−1

4(1−α)j

= π(200)24D
(
4α−1 +

1
1− (1/4)α−1

)
.

That is,

(4.17)

s2 ≤ 1 + ln
(
π(200)24D

(
4α−1 +

1
1− (1/4)α−1

))
.
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Now the lower and upper bounds on χ(Gn), respec-
tively,

lnn

ln lnn

(
1 +

ln ln lnn + s1

ln lnn

)
≤ χ(Gn)

and

χ(Gn) ≤ lnn

ln lnn

(
1 +

ln ln lnn + s2

ln lnn

)
,

give us the size of the gap

C lnn/(ln lnn)2.(4.18)

Finally, the constant C, specified in the abstract, is

C = s2 − s1,

where s1 and s2 are given in Eq. (4.16) and Eq. (4.17),
respectively.

5 Conclusion

In this work, we have derived the chromatic number and
proposed a coloring algorithm on GTG, for the case of
θn = Θ(n), that is, when the mean degree is constant. It
naturally arises, that we are interested into the values of
the chromatic number for denser and sparser GTGs. A
particularly interesting case would be to show χ around
the connectivity regime. The connectivity threshold
has been derived to be θn = Θ(n/ lnn), [2]. However,
the methods that we have used here rely heavily on
techniques that work for random geometric graphs of
equivalent degree. It is unclear whether those techniqes
would apply near the connectivity threshold, because
the limiting connectivity regime in RGG, when the
typical vertex degree grows logarithmically, is of special
interest and is already ‘hard’ [10].
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