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1 Background

Computer science and physics have been closely linked since the birth of modern computing.
This book is about that link. John von Neumann’s original design for digital computing
in the 1940s was motivated by applications in ballistics and hydrodynamics, and his model
still underlies today’s hardware architectures. Within several years of the invention of the
first digital computers, the Monte Carlo method was developed, putting these devices to
work simulating natural processes using the principles of statistical physics. It is difficult to
imagine how computing might have evolved without the physical insights that nurtured it.
It is impossible to imagine how physics would have evolved without computation.

While digital computers quickly became indispensable, a true theoretical understanding
of the efficiency of the computation process did not occur until twenty years later. In
1965, Hartmanis and Stearns [30] as well as Edmonds [20, 21] articulated the notion of
computational complexity, categorizing algorithms according to how rapidly their time and
space requirements grow with input size. The qualitative distinctions that computational
complexity draws between algorithms form the foundation of theoretical computer science.
Chief among these distinctions is that of polynomial versus exponential time.

A combinatorial problem belongs in the complexity class P (polynomial time) if there
exists an algorithm guaranteeing a solution in a computation time, or number of elementary
steps of the algorithm, that grows at most polynomially with input size. Loosely speaking,
such problems are considered computationally feasible. An example might be sorting a list of
n numbers: even a particularly naive and inefficient algorithm for this will run in a number
of steps that grows as O(n2), and so sorting is in the class P. A problem belongs in the
complexity class NP (non-deterministic polynomial time) if it is merely possible to test, in
polynomial time, whether a specific presumed solution is correct. Of course, P ⊆ NP: for any
problem whose solution can be found in polynomial time, one can surely verify the validity
of a presumed solution in polynomial time.
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However, finding a needle in a haystack involves a great deal more than just verifying
that an object is a needle. For many problems in NP, even our best attempts at finding
a solution have yielded algorithms that require exponential time. A famous example is the
traveling salesman problem of finding a tour with n cities, such that the tour’s total length
is less than a fixed constant. One can readily confirm whether a proposed solution meets
the desired criteria, but there is no known polynomial-time algorithm for locating a solution
among the n! possible orders in which we could visit the cities. Thus, some problems in NP
appear to be computationally hard or intractable. To the extent possible, we would like to
categorize which NP problems are also in P, and which are not.

In the early 1970s, Cook [14] and Karp [36] took a large step towards such a categorization
with the notions of NP-hardness and NP-completeness. A problem A is NP-hard if any NP
problem can be converted or reduced to it in polynomial time: if there were a polynomial-
time algorithm for A, all NP problems could be solved in polynomial time. A problem is
NP-complete if it is both NP-hard and itself in NP. NP-complete problems are therefore
the hardest among NP problems. If any of them could be solved by a polynomial-time
algorithm, that would immediately imply P = NP. It is widely believed that this is not the
case. Finding a solution in an exponentially large search space seems intrinsically harder
than checking a proposed solution. But proving or disproving that P = NP remains an
open question to this day, and is unquestionably the central unsolved problem in theoretical
computer science [17].

Cook’s main result was a proof that the problem of satisfiability , or deciding whether
or not a propositional formula in Boolean logic can be satisfied, is NP-complete. Having
established satisfiability as the founding NP-complete problem, one may then prove that
other problems are NP-complete by showing that satisfiability can be reduced to them. This
is indeed what Karp did, for a host of well-known combinatorial problems including graph
coloring, vertex cover, number partitioning, and the traveling salesman problem. Since that
time, many thousands of other problems have been proven NP-complete, ranging over an
astonishing variety of problem domains, from industrial resource allocation to predicting
how proteins fold. It appears highly unlikely that there are algorithms that can guarantee a
solution to any of these problems in polynomial time.

The crucial term, however, is “guarantee.” Computational complexity theory deals with
the universal quantifier: can one solve the problem in polynomial time, for all possible
instances of the problem? This is a worst-case notion. Computer scientists sometimes
imagine a fictitious adversary who designs instances that are as hard as possible, deliberately
trying to make our algorithms fail. But in many cases, we would be satisfied with a weaker
guarantee. What if the problem is NP-complete, but for many types of instances it can still
be solved in polynomial time? What if the hard instances are actually rather rare, and in
practice the problem can almost always be solved in polynomial time? It did not case take
researchers very long to discover that this is exactly what happens for certain forms of the
satisfiability problem [25, 28].

Here is where physics comes back into the picture. Physicists are used to problems given
to them by nature, not designed by a malicious adversary. To physicists, nature can be
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astonishingly benevolent, often admitting beautiful and elegant solutions to its problems.
While computer science has to work in some contexts where there really is an adversary—for
instance, in cryptography—perhaps real-world instances of NP-complete problems are more
like natural systems than maliciously designed ones.

There is another crucial cultural difference between computer science and physics. While
computer scientists think of problem instances as given with complete specificity, statistical
physicists try to study the macroscopic properties of a system and avoid explicit consider-
ation of its microscopic details. The canonical nineteenth century example is Boltzmann’s
unification of thermodynamics with Newtonian dynamics, showing how bulk properties such
as temperature and pressure emerge from the statistical behavior of atoms in a gas. This
approach necessarily implies averaging over the local properties of individual atoms in order
to obtain a broad statistical description, explaining how the system “typically” behaves at
an appropriate level of resolution.

Kirkpatrick, Gelatt, and Vecchi [38] exploited the relation between computationally hard
combinatorial problems and the principles of statistical physics in their 1983 paper intro-
ducing the simulated annealing method. The idea was as follows. Finding the solution to a
combinatorial optimization problem, such as the shortest possible traveling salesman tour, is
formally equivalent to finding the ground state, or lowest-energy state, of a physical system in
thermal equilibrium. In both cases there is an objective function to be minimized, consisting
of contributions from all the components of the system: the tour length is the sum of all link
lengths in the tour, and the energy is the sum of the interaction energies among all atoms
in the system. In statistical mechanics, given a certain physical temperature τ (measured in
units of energy), the probability of the system finding itself in a specific state C with energy
E(C) is proportional to the Boltzmann factor:

Pr[C] ∝ e−E(C)/τ . (1)

In the zero-temperature limit τ → 0, this probability is concentrated at the ground state.
The third law of thermodynamics tells us that achieving τ = 0 is a physical impossibility, but
by annealing a system, or cooling it slowly enough, one may at least come close to reaching
the ground state. The computational analogy for a combinatorial optimization problem is
to pick as a starting point some valid solution—not necessarily the optimal one—along with
some starting value of the temperature parameter τ , and iteratively update this solution by
a Monte Carlo process that mimics thermal fluctuations. One then slowly reduces τ over
the course of the simulation, in the hope of descending upon the solution that minimizes the
objective function.

Simulated annealing offered a very practical recipe for finding solutions to NP-hard prob-
lems that are optimal or near-optimal. But the analogy it suggested opened the way to a far
broader view of the connections between statistical physics and theoretical computer science.
The key insight involves considering computational problems whose inputs are random com-
binatorial structures: for instance, satisfiability over suitably generated random formulas, or
graph coloring over a particular random graph ensemble. As Kirkpatrick et al. noted in their
paper [38], this view is entirely appropriate for problems with large input size n. The asymp-
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totic limit n → ∞ is analogous to the thermodynamic limit in statistical physics, where the
law of large numbers should apply and relative fluctuations around the average case should
go to zero. When this occurs, the system is said to be self-averaging. Of course, asymptotic
analysis is no stranger to complexity theory either. When one speaks of an algorithm that
runs in polynomial time, one refers to the way running time scales with n in precisely the
same limit n → ∞.

While statistical physicists initially studied models on regular lattices, such as the Ising
model of magnetism, they subsequently considered disordered models in which the parame-
ters or topology of the interactions vary randomly from site to site. One model of particular
interest has been that of spin glasses [44], generalizations of the Ising model that describe how
glassy materials behave. It was noticed early on that finding the ground state of a spin glass
is an NP-hard combinatorial optimization problem. Inspired by this analogy, researchers
became increasingly interested in applying techniques from spin glasses to other combinato-
rial problems. This resulted in some important successes. Using the replica method, which
we outline later in this chapter, Mézard and Parisi [42] provided a closed-form analytical
prediction for the optimal value of the objective function in the minimum-weight matching
problem, over an ensemble of random weights in the asymptotic limit. They subsequently
extended this analysis to the traveling salesman problem [41], giving numerical estimates for
the asymptotic optimal tour length that later studies have largely confirmed [33, 39, 49].

2 Phase Transitions

Let us return to the issue of worst-case versus average-case complexity, as that leads us
to one of the primary subjects of this book. In 1991, a paper by Cheeseman, Kanefsky,
and Taylor appeared in the artificial intelligence literature, entitled “Where the really hard
problems are” [11]. The paper pointed out two empirical properties taking place in random
instances of several NP-complete problems, including satisfiability and graph coloring.

• With an appropriate parametrization of the ensemble, there is a sharp phase boundary
separating different problem instances. In the case of satisfiability, when the density α
of logical constraints in the formula (specifically: the number of clauses per variable)
lies below a certain critical value αc, the formula is almost certainly satisfiable. This
is shown by the solid curve in figure 1. When α > αc, the formula is almost certainly
unsatisfiable. Furthermore, the threshold becomes increasingly sharp as the problem
size n increases. Such a phase boundary had in fact been predicted several years earlier,
by Huberman and Hogg [31], in the context of artificial intelligence applications.

• These problems are relatively easy to solve as long as the input instance is clearly in
one phase or the other. The hard instances are those near the boundary between the
two regions: that is where search algorithms require the largest running time to find
a solution, or determine that there is none. Increasing the control parameter α gives
rise to an “easy-hard-easy” pattern, as one moves from the underconstrained region,
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Figure 1: Schematic representation of phase transition in satisfiability. Solid curve denotes
probability that a formula is satisfiable, falling rapidly from 1 to 0 at the threshold. Broken
curve denotes computational cost for determining satisfiability, and displays easy-hard-easy
pattern as constraint density is increased across the threshold.

across the critical threshold, and into the overconstrained region. This is shown by the
broken curve in figure 1.

To a statistical physicist this looks conspicuously like a phase transition. As some macro-
scopic parameter crosses a critical threshold, the system undergoes a sudden change in its
properties. The canonical example is when water freezes; when the temperature crosses the
freezing point, the global behavior changes drastically even though the local interactions
between water molecules stay the same. Furthermore, phase transitions are associated with
the phenomenon of critical slowing-down, where relaxation times diverge and the system
can take very long to reach equilibrium. Phase transitions have been a major area of study
in mathematical physics since years before the introduction of computational complexity
theory [10, 24, 34]. There is a well-developed theory of critical phenomena for modeling and
analyzing the system’s properties, particularly the types of nonanalyticities that appear at
the critical point and how various quantities scale in its vicinity.

The study of phase transitions also has a distinguished history in graph theory. In their
1959 paper, Erdős and Rényi [23] proved that over an ensemble of random graphs with n
vertices, for large n the global structure of the graph changes dramatically when the mean
degree is increased from slightly below 1 to slightly above 1. Below the threshold, connected
clusters of vertices are very small, and with high probability the largest one has size only
O(log n). At the threshold, however, there is an abrupt change, and above the threshold
a giant component of size O(n) emerges. The probability that the graph possesses a giant
component is governed by a zero-one law, jumping discontinuously from zero to one at the
threshold.
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Whether referred to as phase transitions, sharp thresholds, or zero-one laws, these phe-
nomena are hardly anomalous. As discussed in chapter 2, one might argue that in view of the
law of large numbers, when the size of the problem gets large enough, the probability distri-
bution of an event over independent random inputs should become very sharply peaked. If
one tosses a coin many times, and the coin is even very slightly biased, with high probability
the results of the overall experiment will closely reflect the bias. If the coin comes up heads
with probability p, and p is an adjustable parameter, then if one were to increase p from
1/2−ε to 1/2+ε the chances of seeing more heads than tails would jump abruptly from very
low to very high. As the number n of coin tosses goes to infinity, this threshold becomes
sharp. Admittedly, the example of coin tossing is trivial. But it motivates why one should
not be altogether surprised if, say, the minimum fraction of constraints violated in a Boolean
formula becomes sharply concentrated about its mean for large formulas. The critical value
αc of the constraint density would then be the value at which this fraction reaches zero and
the formula becomes satisfiable.

To the extent that threshold phenomena in computationally hard problems mirror phase
transitions as studied in statistical physics and graph theory, much existing work can be
carried over to the realm of computer science. That is what Kirkpatrick and Selman did in
1994 [37], in their paper analyzing the satisfiability phase transition. Using the statistical
physics techniques of finite-size scaling, they provided numerical estimates of several fun-
damental properties of the transition, including the control parameter’s critical value and
the critical exponent characterizing how quickly the critical window narrows with increas-
ing problem size. The hope was that an improved understanding of phase transitions in
this context would lead to an improved understanding of which instance classes of an NP-
hard problem are truly hard, what makes them hard, and how one might design algorithms
appropriately.

This hope is well on its way to being fulfilled. Over the past decade, the goal of under-
standing and exploiting the relationship between phase transitions and average-case com-
plexity has mobilized computer scientists, mathematicians, and physicists alike. A flurry of
activity has resulted, encompassing conjectures, theoretical insights, and numerical as well
as rigorous results. These form the subject of the upcoming chapters, and fall into two broad
and occasionally commingled categories: methods of analysis from statistical physics used
to investigate algorithmic behavior near the threshold, and probabilistic techniques used
to prove properties of the threshold. The first category contains recent work [47] inspired
by the statistical mechanics of the satisfiability problem, exploring the connection between
the precise nature of the phase transition and the problem’s average-case complexity. It
also includes the more detailed view of phase structure discussed in chapter 3, originating
from spin glass theory, and resulting in algorithmic methods such as the survey propaga-
tion algorithm described in chapter 4. The second category contains a host of new results
in probabilistic analysis. Examples include an exact mathematical characterization of the
phase transition [9] for a specific variant of satisfiability (albeit one in P), as well as bounds
on the location of the critical threshold for the NP-complete variant 3-SAT, discussed in
chapter 7.
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3 Basic Models

The satisfiability problem will occupy our attention for much of this book. It has become the
combinatorial model of choice for investigating threshold behavior, due to its fundamental
role in NP-completeness, its practical applicability in artificial intelligence, and its simple
formulation. In this section we define satisfiability, as well as two more model problems,
graph coloring and the spin glass. Other combinatorial problems that have attracted the
attention of physicists, such as vertex cover and number partitioning, will be described in
depth in subsequent chapters of the volume.

3.1 Satisfiability (SAT)

Consider n Boolean variables x1, . . . , xn, where each xi can be assigned the value true or
false. Define a logical formula φ(x1, . . . , xn) as a Boolean function of these variables, com-
posed of the logical operators AND, OR, and NOT. The satisfiability problem is to determine
whether there is a truth assignment for these variables such that φ(x1, . . . , xn) = true.

Any Boolean formula can be rewritten in conjunctive normal form (CNF), defined as
follows. Let a literal be either a variable xi or its complement xi = NOT xi. Let a clause
be the disjunction, i.e., the OR, of a set of literals. A CNF formula is then the conjunction,
i.e., the AND, of a set of clauses. Thus a possible CNF formula might be

φ = (x3 OR x2 OR x5) AND (x1 OR x2) AND (x3 OR x4 OR x5 OR x6). (2)

In this particular formula, the clauses do not all have the same length (number of literals).
When they do, and when the length is k, the formula is said to be k-CNF. Satisfiability on
k-CNF formulas is a frequently discussed version of the problem, and is known as k-SAT.

It is possible to rewrite any CNF formula, and thus any Boolean formula, in 3-CNF form.
For instance, by introducing two new variables z1 and z2, eq. (2) can be rewritten as

φ = (x3 OR x2 OR x5) AND (x1 OR x2 OR z1) AND (x1 OR x2 OR z1)

AND (x3 OR x4 OR z2) AND (x5 OR x6 OR z2) .

Satisfiability is known to be NP-complete. It is relatively straightforward to transform
any CNF formula into a 3-CNF formula in a number of steps that is polynomial in n, using
the method above. It follows that 3-SAT, and more generally k-SAT for any k ≥ 3, is NP-
complete. By contrast, 2-SAT is in the complexity class P, and it is not generally possible
to transform a CNF formula into a 2-CNF formula!

All of these forms of SAT are decision problems. The goal is to answer the yes/no question
of whether the formula is satisfiable. But there is also an analogous optimization problem,
MAX-SAT: find a truth assignment that maximizes the number of satisfied clauses. Since it
is not clear how to verify that a proposed truth assignment is optimal, it is common to define
an NP version of this problem in which we ask whether it is possible to satisfy more than
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a certain number of clauses. Interestingly, this version of MAX-2-SAT, the optimization
problem corresponding to 2-SAT, is NP-complete in spite of the fact that 2-SAT is solvable
in polynomial time.

If we wish to construct random k-SAT instances with n variables and m clauses, a natural
way to do so is as follows. Construct each clause by choosing k variables randomly and
negating each one with probability 1/2. The clause density is then α = m/n; note that we
take the limits m, n → ∞ simultaneously so that α is held constant.

The satisfiability threshold conjecture states that there is a critical αc separating the
underconstrained phase from the overconstrained phase. Specifically, it is believed that for
each k ≥ 3, there is a sharp threshold αc with the following property: given any ε > 0, in
the limit n → ∞ the probability that a random k-SAT formula is satisfiable tends to 1 if
α < (1 − ε)αc and to 0 if α > (1 + ε)αc. For k = 2, this is known to be true, and the
threshold is exactly αc = 1. For k = 3, it has not yet been rigorously proven that a sharp
threshold exists; but assuming it does, numerical evidence and arguments from statistical
physics suggest that αc ≈ 4.27 [43].

3.2 Graph Coloring (COL)

Consider a graph with n vertices and edges connecting certain pairs of vertices. The graph
coloring problem is to assign colors to vertices so that no edge connects two vertices of the
same color. When our palette is limited to q colors, the problem is known as q-COL.

Analogously to SAT, 3-COL is NP-complete whereas 2-COL can be solved in polynomial
time. The optimization problem corresponding to the decision problem is to find the color
assignment that minimizes the number of violated edges, connecting vertices of the same
color. This is best described by a picture: figure 2 shows an example of a 3-COL assignment
that results in two violated edges.

Now construct graphs randomly, so that an edge connects any given pair of the n vertices
with probability p. This is the famous Gn,p ensemble of random graphs studied by Erdős and
Rényi [23]. The mean degree of such a graph is α = p(n− 1) ' pn in the limit n → ∞. Just
as there is a sharp threshold at α = 1 where the giant component emerges, we believe that
for any q ≥ 3, q-COL has a sharp threshold where the probability of q-colorability drops
abruptly from 1 to 0. Recent numerical estimates for the 3-COL threshold location give
αc ≈ 4.69 or 4.70 [8, 48].

3.3 Spin Glasses

Computer scientists typically describe problems using hard constraints, where for instance ev-
ery clause must be satisfied or every edge must have endpoints of different colors. Physicists,
on the other hand, often describe systems in terms of an energy function or Hamiltonian.
To map one onto the other, we may assign a positive energy contribution to each violated
constraint; then the system’s ground-state energy will be zero if and only if it is possible
to satisfy all constraints. This mapping has been especially fruitful in the case of the spin
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Figure 2: 3-COL assignment in a graph, with two edge violations. Colors assigned to ver-
tices are represented by filled circles, shaded circles and empty circles. Dashed lines denote
violated edges in the graph, connecting a pair of vertices of the same color.
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glass Hamiltonian, a central topic of research among statistical physicists over the past two
decades. Arguably, the spin glass model is as fundamental to the physics of disordered
systems as satisfiability is to computational complexity.

Before discussing the spin glass, let us define the simpler Ising model , which uses the
language of spins to provide a basic explanation of the physical phenomenon of ferromag-
netism. Consider n binary variables s1, . . . , sn, where any si can be assigned the value +1 or
−1. Physically, these variables represent the quantum mechanical spin state of a spin-1/2
particle. We call si = +1 “up” and si = −1 “down.” The energy associated with interactions
between particles is given by the Ising Hamiltonian

EIsing = −J
∑

〈i,j〉

si sj

where the notation 〈i, j〉 represents all pairs of particles i and j that are nearest neighbors
on a square lattice. Recall that at a given temperature τ , the probability of the system
adopting a specific configuration C of the spin variables is given by the Boltzmann factor,
eq. (1). In the thermodynamic limit (n → ∞), and for positive J , there is a phase transition
at the Curie temperature τc. For τ > τc there is no overall magnetization: there are as
many up spins as down spins, and distant sites are independent of one another. But for
τ < τc, the system becomes spontaneously magnetized, and the majority of spins align with
one another. At τ = 0 the system adopts a ground-state configuration, minimizing EIsing by
having all spins si taking on the same value: either up or down.

The Ising model is clearly an idealization or “toy model” of magnetic materials: in
particular, it assumes that spins are arranged in a square lattice and only interact with their
nearest neighbors. However, physicists have found that while the transition temperature τc

depends on the details of a materials’ topology and interactions, the type of transition does
not. In particular, the critical exponents describing how correlations, relaxation times, and
magnetizations scale near the phase transition depend only on the dimension of the lattice,
and not, for instance, on whether it is triangular versus square, or on whether interactions
extend to neighbors several steps away. This fortunate fact means, first of all, that the Ising
model is a far more effective description of real ferromagnetic materials, such as iron, than we
might have originally thought. Second of all, it inspires physicists to think of systems as being
grouped into universality classes that abstract away their details and capture the qualitative
aspects of their behavior. Such a qualitative classification is not altogether dissimilar to that
of computational complexity theory, in which constraint satisfaction problems are generically
NP-complete and only a few special cases are in P.

While the Ising model displays a nontrivial phase structure, as a combinatorial optimiza-
tion problem it is uninteresting. But now, imagine that the material being modeled is not
entirely homogeneous and that interactions are not only between lattice neighbors. Fur-
thermore, imagine that not all interactions are ferromagnetic, encouraging spins to align in
the same direction; some are also antiferromagnetic, encouraging them to align in opposite
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directions. The Hamiltonian generalizes to

E = −
∑

i<j

Jij si sj , (3)

where the coupling constants Jij can be positive, negative or zero. Equation (3) describes the
Hamiltonian for the spin glass, so named because magnetic materials modeled in this way,
such as copper-manganese alloys, can have a “glassy” phase displaying short-range order but
long-range disorder.

Finding the ground state of a spin glass is, in general, an NP-hard problem [6]. Like the
models we have considered up until now, it is appropriate to consider the spin glass over an
ensemble of random inputs. Physically, this makes sense: glasses are distinguished by the
randomness of the disorder spread through them, as distinct from the ordered structure of
a crystalline solid. Thus, the theory of spin glasses has focused on studying these materials
when the coupling constants Jij are chosen randomly. One analytically tractable ensemble,
introduced by Sherrington and Kirkpatrick in 1975 [51], considers Jij for each unordered
pair i, j to be chosen independently from a Gaussian distribution with mean zero. Another
ensemble, the Edwards-Anderson ±J spin glass [22], considers Jij to be nonzero only when
i and j are lattice neighbors—as in the Ising model—in which case it is chosen from +J0 or
−J0 with equal probability.

The basic problem we have posed for the spin glass is an optimization problem rather than
a decision problem. Of course, the model is related in a formal sense to combinatorial prob-
lems that are well-studied outside of the physics community. For instance, a straightforward
transformation of eq. (3) shows that finding the ground state of a spin glass is equivalent to
the classic graph-theoretic problem of weighted MAX-CUT [6]. In this problem, the vertices
of a weighted graph must be partitioned into two sets, while maximizing the sum of the
weights along all edges that connect vertices in opposite sets.

Moreover, the NP-complete problems we have presented earlier can be captured by vari-
ants of the spin glass Hamiltonian. Consider first graph coloring. One may generalize the
basic Ising model to the Potts model, where spins si are not binary but can take on any one
of q values, or colors, in {1, . . . , q}. The Potts Hamiltonian is then

EPotts = −J
∑

〈i,j〉

δ(si, sj) ,

where the Kronecker δ function gives 1 when si = sj and 0 otherwise. This model can
be extended from a lattice to an arbitrary graph. If J is negative, the Potts model is
antiferromagnetic and adjacent spins try to have different colors; since the energy is J times
the number of violated edges, the ground-state energy is zero if and only if the graph is
q-colorable.

Now consider satisfiability. For each Boolean variable xi, define a corresponding spin
si = +1 if xi = true, and si = −1 if xi = false. Define the clause matrix W such that
Wji = +1 if clause j includes literal xi, Wji = −1 if clause j includes literal xi, and Wji = 0
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otherwise. It follows that for k-CNF formulas, the indicator expression

Vj =
1

2k

n
∏

i=1

(1 − Wjisi)

takes on the value 0 when clause j is satisfied and 1 when it is violated. The number of
violated clauses is then given by

Ek−SAT =
m
∑

j=1

Vj =
1

2k

m
∑

j=1

n
∏

i=1

(1 − Wjisi) . (4)

Minimizing the number of violated clauses is the same as maximizing the number of satisfied
clauses, so finding the ground state of this “k-SAT Hamiltonian” is equivalent to solving
the MAX-k-SAT problem. The ground-state energy is zero if and only if the formula is
satisfiable. The main difference between eq. (4) and the spin glass Hamiltonian of eq. (3) is
that now there are interactions between groups of k spins, rather than just between pairs.
Fortunately, models of this type are well known in statistical physics.

In satisfiability and graph coloring, we might be tempted to focus simply on finding a
solution or confirming that none exists. Indeed, this is traditionally how computer scientists
have framed such problems. But the analogy with spin glasses reveals that the system’s
behavior is far richer than that: the transition from satisfiability to unsatisfiability is only
a part of the picture. As we will see in the next section, the order parameter relevant to
the transition is not only the probability that a solution exists, but is in fact an entire
probability distribution describing the solution structure. Certain techniques developed for
spin glasses lend themselves particularly well to the study of k-SAT [46], leading to both
analytical insights and new algorithms.

4 The View from Statistical Physics

The chapters of this volume discuss diverse methods of analysis that researchers have brought
to bear on combinatorial problems, drawn from computer science, mathematics, and physics.
In this section, we give a glimpse of how statistical physicists study the structure of these
problems, focusing in particular on the replica method.

The replica method is a powerful analytical approach developed in spin glass theory
and recently applied to a variety of NP-hard problems. We do not attempt to cover the
technical details involved in the replica method; rather, we outline the method in the hope
of demonstrating how analyzing the physics of the problem can provide valuable insight.
Our discussion serves as background to much of the material in this book. In illustrating
the replica method and related approaches, we use k-SAT as a model problem and follow
the language of Martin et al. [40].

Consider a physical system in thermal equilibrium at temperature τ . As we have seen in
eq. (1), the probability of being at a specific state C is proportional to the Boltzmann factor
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exp(−E(C)/τ). Normalizing this gives

Pr[C] =
e−E(C)/τ

Z
, where Z =

∑

C

e−E(C)/τ .

But the quantity Z, called the partition function, is far more than a mere normalizing
constant: it embodies a considerable amount of information about the system. Z is a
generating function from which one can directly obtain many thermodynamic quantities of
interest. For instance, the thermally-averaged energy of the system,

〈E〉 =
∑

C

E(C)Pr[C] =
1

Z

∑

C

E(C)e−E(C)/τ ,

is given by Z and its first derivative:

〈E〉 =
τ 2

Z

dZ

dτ
.

In principle, the ground-state energy EGS is then found by taking the limit τ → 0. There,
one can show that 〈E〉 approaches −τ log Z.

This is all for a given realization of the system, meaning a given setting of the couplings
Jij in a spin glass, or a given instance of graph coloring or k-SAT. We want to work over an
ensemble of random instances. In the case of k-SAT, in order to study the problem’s phase
behavior for clause density α near αc, we need to understand the distribution of the random
variable EGS over the ensemble. Notably, if we denote by EGS the average over random
instances at a given α—not to be confused with the thermal average above—then a typical
instance will be satisfiable if EGS = 0 and unsatisfiable if EGS > 0.

Using the k-SAT Hamiltonian in eq. (4), EGS for m = αn clauses can be written as

EGS = min
s1,...,sn

1

2k

αn
∑

j=1

n
∏

i=1

(1 − Wjisi) .

Since this form does not clearly lend itself to analysis, let us make use of the partition
function. We know that

EGS = − lim
τ→0

τ log Z

where

Z =
∑

s1,...,sn

exp

(

−
1

τ

1

2k

αn
∑

j=1

n
∏

i=1

(1 − Wjisi)

)

.

Calculating the ensemble average of the logarithm of a function is difficult if not impossible.
However, note that the logarithm satisfies the property

log Z = lim
r→0

Zr − 1

r
,
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so

EGS = − lim
τ→0

lim
r→0

τ
Zr − 1

r
.

We now introduce the replica trick: proceed as if r were a positive integer, and calcu-
late the rth moment of the partition function. Then, after doing so, perform an analytic
continuation to real r and finally take the limit r → 0. Proceeding in this way,

Zr =

[

∑

s1,...,sn

exp

(

−
1

τ

1

2k

αn
∑

j=1

n
∏

i=1

(1 − Wjisi)

)]r

=
∑

s1
1,...,s1

n

· · ·
∑

sr

1,...,sr
n

αn
∏

j=1

exp

(

−

r
∑

a=1

1

τ

1

2k

n
∏

i=1

(1 − Wjis
a
i )

)

.

We can interpret the leading sums as being over the states of r copies, or replicas, of the
system, all with the same random realization. Thus, for integer r, the rth moment Zr is the
average partition function for the r replicas.

Although it is much easier to calculate Zr than log Z, it is by no means easy. Furthermore,
even if we can calculate Zr for all integer r, its analytic continuation may or may not make
sense in the limit r → 0. One can argue that for finite n, given all moments of Z, one
can perfectly reconstruct its probability distribution and, therefore, justify the existence and
uniqueness of the analytic continuation. Unfortunately, we are interested in the n → ∞
limit where this argument does not hold. It is remarkable that in spite of the lack of rigorous
justification, the replica method has been extremely successful in predicting effects later
confirmed by other theoretical approaches and by numerical experiments.

After a certain amount of algebraic manipulation [40], writing Zr in the limit n → ∞
leads to a saddle-point integral. In order to write this integral, we introduce the notation ~σ
to represent an r-dimensional binary vector, ~σ ∈ {−1, 1}r, with components σ1, . . . , σr over
the r replicas. We furthermore introduce ~u to represent a real-valued 2r-dimensional vector
with components {u~σ : ~σ ∈ {−1, 1}r}, in turn, over the 2r possible values of ~σ. Then,

Zr =

∫

∏

~σ

du~σ δ

(

∑

~σ

u~σ − 1

)

enF (~u), where

F (~u) = α log





∑

~σ1,...,~σk

u~σ1 · · ·u~σk
exp

(

−
1

τ

r
∑

a=1

k
∏

l=1

1 + σa
l

2

)



−
∑

~σ

u~σ log u~σ .

In the replica formalism, u~σ has a physical interpretation as the fraction of spin indices i with
the sequence of values sa

i = σa over the replicas a ∈ {1, . . . , r}. Note that u~σ is constrained
by the Dirac δ-function, representing a normalization condition. Counting the 2r dimensions
of ~u and the one constraint, Zr is an integral over a space of 2r − 1 dimensions.

The saddle-point approximation for this integral gives Zr ∼ exp(nFmax) in the large n
limit, where F is maximized over all ~u. F is symmetric under any permutation π(a) of
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the replicas: as long as a certain vector ~u∗ maximizes F , so too does any vector ~u where
uσ1,...,σr = u∗

σπ(1),...,σπ(r) for all ~σ, i.e., ~u∗ with its components reshuffled. If, furthermore, F

has a unique maximum, then u∗
σ1,...,σr = u∗

σπ(1),...,σπ(r) for all ~σ, and we may restrict our space

to vectors ~u that are themselves invariant under permutation. For a given u~σ, we need only
consider how many components of ~σ have the value 1 and how many have the value −1.

The assumption of a unique maximum for F is known as replica symmetry . Under such
an assumption, we can write u~σ in the form

u~σ =

∫ 1

−1

dµ P (µ)

r
∏

a=1

1 + µσa

2
, (5)

which may be inserted into the equation for F (~u). We can now perform the analytic contin-
uation of r to the real numbers and take the limit r → 0. The result is a functional equation
for F [P (µ)]. Using Lagrange multipliers we optimize F over the function space of P (µ),
leading to a self-consistent integral equation for P (µ). What is the meaning of P (µ) when
τ → 0? Let µi be the magnetization, or average value of a given variable si over all possible
ground-state configurations. It turns out that if the assumption of replica symmetry is cor-
rect, P (µ) gives the distribution of magnetizations µi. Thus, P (µ) is simply the probability
density for a variable’s value averaged over the ground states.

The self-consistent equation for P (µ) admits a family of solutions. All of these share an
important qualitative feature in the τ → 0 limit. For α below a fixed αc (αc = 1 for 2-SAT,
αc ≈ 4.6 for 3-SAT), P (−1) = P (1) = 0, meaning that the expected fraction of variables
completely “frozen” to a value of true or false over all optimal assignments is zero. For
α > αc, however, the form of P (µ) changes and the distribution starts having nonzero weight
at µ = ±1: a “backbone” emerges, in which certain variables are constrained to be true or
false. P (µ) is, therefore, not only a function, but also an order parameter that signals a
phase boundary.

In calculating Zr ∼ exp(nFmax) under the assumption of replica symmetry, one finds
that the structural change in P (µ) is mirrored by a structural change in EGS. For α < αc,
EGS = 0, whereas for α > αc, EGS > 0. The latter is certainly not surprising: if a finite
fraction of the variables could be frozen to specific values over all satisfying assignments, the
addition of a single new clause would with finite probability lead to a violation. Interestingly,
though, the nature of the transition in P (µ) is different for 2-SAT and for 3-SAT [47]. In the
case of 2-SAT, there is a continuous transition. At α = αc, P (±1) = 0 and then increases
continuously with increasing α. In the case of 3-SAT, there is a discontinuous transition.
Already at α = αc, a nonzero backbone spontaneously emerges with P (±1) > 0.

The replica symmetric (RS) solution is a very convenient one, and helps provide a valuable
physical understanding of the phase structure. But it only tells part of the story. The manner
in which the various limits are taken lacks mathematical rigor, and there is no guarantee that
replica symmetry holds: F may not have a unique maximum. Indeed, while the RS solution
is exact for 2-SAT, it does not give the correct threshold location for 3-SAT. Empirically,
we know that αc is closer to 4.27 than to 4.6. We do not yet know how to provide a firm
mathematical foundation for the replica method, but we can, on the other hand, improve
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upon the RS solution by explicitly introducing a form of replica symmetry breaking (RSB)
into F (~u) [7].

The intuition for RSB is as follows. Consider two different optimal assignments for a
3-SAT instance, and look at the relative Hamming distance d between them: the fraction of
variables that are set to true in one configuration but false in the other. A consequence
of the RS assumption and eq. (5) is that, for large n, over the space of optimal configuration
pairs the Hamming distance distribution p(d) is sharply peaked at a single value

dRS =
1

2
−

1

2

∫ 1

−1

µ2P (µ) dµ .

Under RSB, however, one allows p(d) to take on a non-trivial structure. The simplest form
of RSB, called “one-step replica symmetry breaking,” assumes that the distribution has
two sharp peaks. One might imagine optimal assignments being contained within clusters,
so that any pair within a given cluster is separated by Hamming distance d0, but pairs
from different clusters are separated by Hamming distance d1. More complex forms of
RSB impose multiple peaks in p(d), corresponding to a hierarchical construction of clusters
within clusters. The limiting case of this is the full RSB scheme, introduced by Parisi for
the Sherrington-Kirkpatrick spin glass [44], where p(d) is a continuum.

For 3-SAT, one-step RSB appears to be sufficient. The resulting analysis [7, 43] suggests
a more subtle phase diagram than the one seen in figure 1. For α below αRSB ≈ 3.92, the RS
solution appears to be correct. The distribution p(d) only displays a single peak, at dRS, and
with high probability instances are satisfiable. In this “easy satisfiable” phase, one is very
likely to find a satisfying assignment with minimal computational effort. At αRSB , the system
undergoes a replica symmetry breaking transition, and for αRSB < α < αc, p(d) displays
both peaks d0 and d1. This is the “hard satisfiable” phase, where with high probability
instances are satisfiable, but the satisfying assignments are separated into clusters, creating
many local optima and making it difficult to find a solution. Finally, at αc, the system
becomes overconstrained, and enters the unsatisfiable phase where satisfying assignments
are unlikely to exist.

This clustering picture is one of the topics of chapter 3. The most successful approach
for analyzing it is based on the cavity method , which uses techniques closely related to the
replica method but not identical. In addition to providing a refined understanding of the
k-SAT phase structure, the cavity method results in a prediction for the threshold location
that is believed to be exact: αc ≈ 4.27 for k = 3. Even more significantly, the method
gives rise to an efficient algorithmic procedure for finding satisfying assignments in the hard
satisfiable phase. The procedure, known as survey propagation, is discussed and analyzed
in chapter 4. It is a perfect example of how improved insights into critical phenomena in
combinatorial problems can lead to direct improvements in algorithmic performance.
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5 The View from Computer Science

Theoretical tools from the physics community, such as the replica method, have been instru-
mental in improving our understanding of the fundamentals of computing. At the same time,
advances in theoretical computer science—both from a probabilistic and from an algorith-
mic perspective—have expanded the frontiers of mathematical physics. One clear difference
between these two approaches is in the methods of analysis. But another very fundamental
cultural difference involves the questions that are asked. Statistical physicists have been
deeply interested in understanding the structure of computational problems and algorithms,
characterizing critical behavior through appropriate order parameters and critical exponents.
Theoretical computer scientists have focused on proving threshold properties with the aim of
obtaining increasingly tight bounds on algorithmic performance. One of the great successes
of the past decade has been the interaction between these two groups. Let us now highlight
some of the main results that have come from the computer science community, and how
these have motivated further results among physicists.

Two key challenges related to the phase transition in satisfiability are proving that a
unique sharp threshold exists for random k-SAT, and identifying its location. For k ≥ 3,
both of these remain open problems. Friedgut [26] has shown that there exists a function
αc(n) such that the threshold becomes arbitrarily sharp about αc(n) in the large n limit.
However, it has not been proven that αc(n) converges to a constant αc as n → ∞, in spite
of overwhelming belief and a large body of experimental and nonrigorous evidence such as
the survey propagation method mentioned above. Much effort has, therefore, been devoted
to establishing upper and lower bounds on the threshold location, discussed at length in
chapter 7. For k = 3, the best lower bound [29, 35] and upper bound [19] to date give
3.52 < αc < 4.506, still leaving a considerable gap. For large k, the best lower bounds [1, 2]
and upper bound [25] give αc = (1 − o(1))2k log k, confirming nonrigorous results from the
replica method [46] and survey propagation [43].

The case of k = 2 is quite different. As mentioned above, random 2-SAT is known to
have a sharp threshold at αc = 1 [12, 27]. Moreover, a lot is now understood about this
transition [9], including exact values for the critical exponents that characterize the sharpness
of the threshold. This has put on a firm mathematical footing the original 1994 numerical
study of Kirkpatrick and Selman [37], at least for k = 2. In addition, Bollobás et al. [9]
have proven an essential property concerning the nature of the 2-SAT transition: an order
parameter called the spine goes to zero continuously as α approaches αc from above. Since
the spine is an upper bound on the backbone mentioned above, a corollary of this result is
that the replica prediction of a continuous backbone transition at the 2-SAT threshold is
correct.

Rigorous results have been obtained for a number of other variants of satisfiability. One
example is the problem of 1-in-k satisfiability, a form of k-SAT where a clause is satisfied only
if exactly one literal in the clause is true. For k ≥ 3, 1-in-k-SAT has been shown [4] to have
a sharp threshold at αc = 1/

(

k
2

)

. Interestingly, even though 1-in-k-SAT is NP-complete, what
makes the precise threshold value possible to obtain here is the structural similarity of the
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problem to 2-SAT. Just as in 2-SAT, if one maps the formula to a hypergraph, unsatisfiability
emerges as a direct consequence of contradictory cycles of implications. Another example
of satisfiability—albeit not an NP-complete one—with a rigorously determined threshold
is the XORSAT problem. Here, the logical XOR operator, or exclusive or, replaces the OR

operator in a CNF formula. This is equivalent to solving a linear system of equations modulo
2, and is solvable in polynomial time by Gaussian elimination. The problem has attracted
the interest of statistical physicists as being a form of SAT that is particularly amenable
to analysis via the replica method. A one-step RSB calculation [50] predicts a threshold
location of αc ≈ 0.918 for 3-XORSAT. Recent work in theoretical computer science [18] has
shown rigorously that the replica prediction is indeed exact, justifying not only the numerical
results of the replica method but also the physical picture that it provides. In particular, this
work has proven the existence of a hard satisfiable phase like the one proposed for 3-SAT,
where solutions exist but are grouped into clusters with large Hamming distances between
them.

Finally, several connections have been suggested between the nature of the phase transi-
tion and the complexity of various classes of algorithms. Recall that in 2-SAT, the backbone
order parameter marking the transition is continuous (though nonanalytic) across the thresh-
old, whereas in 3-SAT, the replica method indicates that it is discontinuous. Now consider
a broad class of resolution algorithms that work by successively assigning values to variables
and backtracking to an earlier assignment when a constraint is violated. This class of al-
gorithms, known as Davis-Putnam or DPLL [15, 16], is described in chapter 3. To analyze
the relation between the continuity of the order parameter and the complexity of DPLL
algorithms on random formulas at the transition, Monasson et al. [47] have considered the
problem (2+p)-SAT, for real p ∈ [0, 1], that interpolates between 2-SAT and 3-SAT. Random
instances of (2+p)-SAT with constraint density α are generated by drawing α(1−p)n random
clauses of length 2 and αpn random clauses of length 3. Based on the replica method, the
transition appears continuous for p close to zero but becomes discontinuous when p exceeds
a critical value p0 = 2/5. At the same p0, the complexity of DPLL algorithms seems to
change from polynomial to exponential.

Recent results in the computer science literature have both supported this picture and
helped clarify its limitations. It has been confirmed [5] that for p ∈ [0, 2/5], the threshold
behavior of (2 + p)-SAT resembles that of random 2-SAT, and the location of the thresh-
old is simply the constraint density at which the 2-CNF component of the random formula
becomes unsatisfiable. Furthermore, the spine order parameter that was proven continuous
for the 2-SAT threshold [9] has indeed been shown to be discontinuous for k-SAT when
k ≥ 3 [32]. This is a weaker result than showing that the backbone is discontinuous, and
hence does not in itself confirm the replica prediction, but motivates considering the spine
as the order parameter of interest. The connection with the complexity of DPLL algorithms
closely involves the study of proof complexity , of key interest in automated theorem proving:
one attempts to bound the number of steps needed to confirm or refute a proposition. A
combination of old and new work in proof complexity [3, 13, 32] shows that a discontinu-
ity in the k-SAT spine directly correlates with exponential resolution complexity, meaning
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that verifying the unsatisfiability of a formula takes DPLL an exponential number of steps.
Conversely, a continuous spine implies that the resolution complexity must be smaller than
any exponential—as for instance in 2-SAT and 1-in-k-SAT, where contradictions are veri-
fied in O(n) steps. These results can be extended from k-SAT to more general constraint
satisfaction problems [45], and lead to the hope that a better understanding of a problem’s
resolution complexity might help identify the threshold location.

6 Outline of the Volume

In this introductory chapter, we have sketched some of the models, methods of analysis, and
results at the intersection of complexity theory and statistical mechanics. These have given
rise to the rich set of scientific interactions that form the subject of this book as a whole.
Our broad aim is to provide the reader with an appreciation of how physical approaches have
contributed to the study of computationally hard problems, and how advances in probabilis-
tic and algorithmic techniques have made the connection such a fruitful one. To this end,
the volume draws on contributions from authors in the computer science, mathematics, and
physics communities—roughly in equal measure, and often in close collaboration. We hope
to make apparent how the constituent disciplines have worked together to create a new and
flourishing field of research. Among the products of these research efforts have been new
algorithmic methods, new combinatorics, and new physics.

Our main focus here is on phase transitions and threshold phenomena in the context of
random combinatorial structures. The book is composed of four parts:

• Part 1: Fundamentals. This part includes two chapters, introducing the reader to
the basic combinatorial and physical concepts of the volume. The present chapter has
given the essential background. Chapter 2 provides a deeper view of the mathemat-
ical foundations of threshold phenomena. The authors explain the origins of sharp
thresholds, and guide the reader through an explicit description of how they relate to
complexity theory and mathematical physics, as well as applications in other fields of
science such as economics. They highlight a number of important open problems that
are echoed in subsequent chapters.

• Part 2: Statistical Physics and Algorithms. The four chapters of this part are
devoted to the role of physical analysis in computational problems as well as the use
of algorithmic methods in understanding the structure of physical problems. Chapter
3 studies the dynamics of DPLL and local search algorithms, showing how both the
critical threshold and a different “dynamical” transition affect algorithmic complexity.
Chapter 4 presents the algorithmic framework of survey propagation, describes the
theory, and applies it to satisfiability and graph coloring. Chapter 5 discusses number
partitioning, analyzing the phase transition by exploiting its similarities to a tractable
physical problem. Chapter 6 considers the spin glass model, and shows how a well-
studied algorithmic method can lead to a physical understanding of the dynamics of
glassy systems.
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• Part 3: Identifying the Threshold. This part contains three chapters that demon-
strate the probabilistic and numerical techniques used to argue for the existence of
thresholds, as well as to identify their location. Chapter 7 reviews recent improve-
ments on upper bounds for αc in the case of k-SAT, illustrating the methods by which
these bounds have been derived. Chapter 8 presents a powerful methodology for prov-
ing conditional randomness that enables the analysis of search heuristics and leads to
improved lower bounds on αc. Chapter 9 discusses the phase transition for a form
of satisfiability called HornSAT, using numerical finite-size scaling techniques together
with related analytical models to investigate the nature of the threshold.

• Part 4: Extensions and Applications. The final part of the volume contains four
chapters that connect the foregoing discussion to a range of applications extending
far beyond model problems. Chapter 10 considers phase transitions in the context
of quantum computing, and shows how the behavior of quantum search algorithms
relates to problem structure. Chapter 11 relates computational complexity to physical
models of surface growth, analyzing the scalability of parallel simulation processes by
means of techniques from statistical mechanics. Chapter 12 introduces a biological
motivation, investigating a model of RNA folding by way of random graph analysis
and the threshold where a giant component emerges. Chapter 13 extends the concept
of typical-case complexity beyond ensembles of random instances: the chapter proposes
a framework in which realistic instances of a problem can be considered, and provokes
thoughts on future directions for computational complexity.

The entire collection of chapters is intended to form a cohesive volume, rather than simply
a set of technical articles. The chapters have been arranged to form a logical and pedagogical
progression, although they may also be appreciated individually and do not necessarily have
to be read in order.

A major challenge in editing a volume of this kind is anticipating the audience and
adjusting the level of discussion to this audience. We expect our subject to interest a wide
range of researchers in computer science, mathematics, and physics. Given the different
scientific cultures and backgrounds, it is an ambitious exercise to make statistical physics
understandable to computer scientists and computer science understandable to physicists.
Nevertheless, we have worked hard to strike the right balance between phenomenology and
theory. Wherever possible, we have standardized notation and terminology across the entire
volume. We assume only basic literacy in the research tools of discrete mathematics and
physics.

Of course, the intersection of computational complexity and statistical physics is vast. It
is impossible to do it justice in a single volume. By focusing primarily on threshold phenom-
ena, we necessarily omit other important and exciting research topics, such as the probabilis-
tic analysis of Markov chain algorithms and the study of network dynamics. Nevertheless,
we hope that this volume will serve both as a reference on an emerging cross-disciplinary
field, and as a snapshot of the state of the field at this point in time.
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