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A local-search heuristic for finding high-quality solutions for many hard optimization problems is explored. The
method is inspired by recent progress in understanding far-from-equilibrium phenomena in terms of self-
organized criticality, a concept introduced to describe emergent complexity in physical systems. This method,
called extremal optimization, successively replaces the value of extremely undesirable variables in a sub-optimal
solution with new, random ones. Large, avalanche-like fluctuations in the cost function emerge dynamically.
These enable the search to effectively scaling barriers to explore local optima in distant neighborhoods of the
configuration space while eliminating the need to tune parameters. Drawing upon models used to simulate the
dynamics of granular media, evolution, or geology, extremal optimization complements approximation meth-
ods inspired by equilibrium statistical physics, such as simulated annealing. This method is very general and so
far has proved competitive with—and even superior to—more elaborate general-purpose heuristics on testbeds
of constrained optimization problems with up to 105 variables, such as bipartitioning, coloring, and spin
glasses. Analysis of a model problem predicts the only free parameter of the method in accordance with all
experimental results. © 2003 Wiley Periodicals, Inc.*
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M any natural systems have, without any centralized

organizing facility, developed into complex struc-

tures that optimize their use of resources in sophis-

ticated ways [1]. Biological evolution has formed efficient

and strongly interdependent networks in which resources

rarely go to waste. Even the morphology of inanimate land-

scapes exhibits patterns that seem to serve a purpose, such

as the efficient drainage of water [2,3].

Natural systems that exhibit self-organizing qualities of-

ten possess a common feature: a large number of strongly

coupled entities with similar properties. Hence, at some

coarse level they permit a statistical description. An external

resource (sunlight in the case of evolution) drives the sys-

tem which then takes its direction purely by chance. Like

*This article is a US Government work and, as such, is in the
public domain in the United States of America.
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descending water breaking through the weakest of all bar-
riers in its wake, biological species are coupled in a global
comparative process that persistently washes away the least
fit. In this process, unlikely but highly adapted structures
surface inadvertently. Optimal adaptation thus emerges
naturally, from the dynamics, simply through a selection
against the extremely “bad.” In fact, this process prevents
the inflexibility inevitable in a controlled breeding of the
“good.”

Various models relying on extremal processes have been
proposed to explain the phenomenon of self-organization
[4]. In particular, the Bak-Sneppen model of biological evo-
lution is based on this principle [5,6]. Assuming an unspec-
ified interdependency between species, it produces salient
nontrivial features of paleontological data such as broadly
distributed lifetimes of species, large extinction events, and
punctuated equilibrium.

In the Bak-Sneppen model, species are located on the
sites of a lattice, and have an associated “fitness” value
between 0 and 1. At each time step, the one species with the
smallest value (poorest degree of adaptation) is selected for
a random update, having its fitness replaced by a new value
drawn randomly from a flat distribution on the interval [0,
1]. But the change in fitness of one species impacts the
fitness of interrelated species. Therefore, all of the species at
neighboring lattice sites have their fitness replaced with
new random numbers as well. After a sufficient number of
steps, the system reaches a highly correlated state known as
self-organized criticality (SOC) [7]. In that state, almost all
species have reached a fitness above a certain threshold.
These species, however, possess punctuated equilibrium:
only one’s weakened neighbor can undermine one’s own
fitness. This coevolutionary activity gives rise to chain reac-
tions called “avalanches,” large fluctuations that rearrange
major parts of the system, potentially making any configu-
ration accessible.

Although coevolution may not have optimization as its
exclusive goal, it serves as a powerful paradigm. We have
used it as motivation for a new approach to approximate
hard optimization problems [8]. The heuristic we have in-
troduced, called extremal optimization (EO), follows the
spirit of the Bak-Sneppen model, updating those variables
that have among the “worst” values in a solution and re-
placing them by random values without ever explicitly im-
proving them.

To introduce EO, let us consider a spin glass [9] as a
specific example of a hard optimization problem. It consists
of a d-dimensional hyper-cubic lattice of length L with
periodic boundary conditions, with a spin variable xi � {�1,
1} at each site i, 1 � i � n (�Ld). A spin is connected to each
of its nearest neighbors j via a bond variable Jij � {�1, 1},
assigned at random. The configuration space � consist of all
configurations S � (x1, . . . , xn) � �, where ��� � 2n.

We wish to minimize the cost function, or Hamiltonian

C�S� � H�x� � �
1
2 �

�i,j �

Jijxixj, (1)

where the sum extends over all nearest-neighbor pairs of
spins. Due to frustration [9], ground state configurations
Smin are hard to find, and it has been shown that for d � 2
the problem is among the hardest optimization problems
[10].

To find near-optimal solutions for a particular optimiza-
tion problem, EO performs a neighborhood search on a
single configuration S � �. As in the spin problem in Eq. (1),
S consists of a large number n of variables xi. We assume
that we can define for each S a neighborhood N(S) that
rearranges the state of merely a small number of the vari-
ables. Those neighborhoods are a characteristic of a local
search, in contrast to a genetic algorithm, say, where cross-
overs may effect O(n) variables on each update. The cost
C(S) is assumed to consist of the individual cost contribu-
tions, or “fitnesses,” �i for each variable xi (analogous to the
fitness values in the Bak-Sneppen model [5,8]). The fitness
of each variable assesses its contribution to the total cost:

C�S� � � �
i�1

n

�i. (2)

Typically, the fitness �i depends on the state of xi in relation
to connected variables.

For example, for the Hamiltonian in Eq. (1), we assign to
each spin xi the fitness

� i � xi� 1
2 �

j

J ijxj� , (3)

so that Eq. (2) is satisfied. Each spin’s fitness thus corre-
sponds to (the negative of) its local energy contribution to
the overall energy of the system. In similarity to the Bak-
Sneppen model, EO then proceeds through a neighborhood
search of � by sequentially changing variables with “bad”
fitness on each update, for instance, via single spin-flips.
After each update, the fitnesses of the changed variable and
of all its connected neighbors are reevaluated according to
Eq. (3). The basic EO algorithm proceeds as follows:

1. Initialize configuration S at will; set Sbest :� S.
2. For the “current” configuration S,

(a) evaluate �i for each variable xi,
(b) find j satisfying �j � �i for all i, i.e., xj creates the

“worst fitness,”
(c) choose S	 � N(S) such that j must change its state,
(d) accept S :� S	 unconditionally,
(e) if C(S) 
 C(Sbest) then set Sbest :� S.
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3. Repeat at step (2) as long as desired.
4. Return Sbest and C(Sbest).

The algorithm operates on a single configuration S at
each step. Each variable xi in S has a fitness, of which the
“worst” is identified. This ranking of the variables provides
the only measure of quality on S, implying that all other
variables are “better” in the current S. In the move to a
neighboring configuration, typically only a small number of
variables change state, so only a few connected variables
need to be re-evaluated [step (2a)] and re-ranked [step (2b)].
Note that there is not a single parameter to adjust for the
selection of better solutions. It is merely the memory en-
capsulated in the ranking that directs EO into the neighbor-
hood of increasingly better solutions. Similar to the
Bak-Sneppen model, those “better” variables possess punc-
tuated equilibrium: their memory only get erased when they
happen to be connected to one of the variables forced to
change. On the other hand, in the choice of move to S	,
there is no consideration given to the outcome of such a
move, and not even the worst variable xj itself is guaranteed
to improve its fitness. Accordingly, large fluctuations in the
cost can accumulate in a sequence of updates. Merely the
bias against extremely “bad” fitnesses produces improved
solutions.

Tests have shown that this basic algorithm is very com-
petitive for optimization problems where EO can choose
randomly among many S	 � N(S) that satisfy step (2c), as is
the situation for graph bipartitioning [8,11]. But in cases
such as the single spin-flip neighborhood for the spin Ham-
iltonian, focusing on only the worst fitness [step (2b)] leads
to a deterministic process, leaving no choice in step (2c): If
the “worst” spin xj has to flip and any neighbor S	 differs by
only one flipped spin from S, it must be S	 � (S/xj) � {�xj}.
This deterministic process inevitably will get stuck near
some poor local minimum. To avoid these “dead ends” and
to improve results [8], we introduce a single parameter into

the algorithm. To this end, we rank all xi according to fitness
�i, i.e., we find a permutation � of the variable labels i with

���1� � ���2� � · · · � ���n�. (4)

The worst variable xj [step (2b)] is of rank 1, j � �(1), and the
best variable is of rank n. Now, consider a scale-free prob-
ability distribution over the ranks k,

Pk � k��, 1 � k � n, (5)

for a fixed value of the parameter �. At each update, select a
rank k according to Pk. Then, modify step (2c) so that the
variable xj with j � �(k) changes its state.

For � � 0, this “�-EO” algorithm is simply a random walk
through �. Conversely, for �3 
, the process approaches a
deterministic local search, only updating the lowest-ranked
variable, and is bound to reach a dead end (see Figure 1).
However, for finite values of � the choice of a scale-free
distribution for Pk in Eq. (5) ensures that no rank gets
excluded from further evolution, while still maintaining a
bias against variables with bad fitness. In all problems stud-
ied so far, a value of

� � 1 � 1/ln n �n 3 
� (6)

seems to work best [12,13]. We have studied a simple model
problem for which the asymptotic behavior of �-EO can be
solved exactly [14]. The model reproduces Eq. (6) exactly in
cases where the model develops a “jam” amongst its vari-
ables, which is quite a generic feature of frustrated systems:
After many update steps most variables freeze into a near-
perfect local arrangement and resist further change, while a
finite fraction remains frustrated in a poor local arrange-
ment. More and more of the frozen (slow) variables have to
be dislocated collectively to accommodate the frustrated

FIGURE 1

Plot of the average costs obtained by EO for a � J spin glass (left), for graph bipartitioning (center), and for the solvable model from [14], all as a function
of �. In the solvable model, we merely had to average runs for each n over initial conditions. For the real problems a number of instances were generated
at each n. For each instance, 10 different EO runs were performed at each �. The results were averaged over runs and over instances. Although both
problems are quite distinct, in either case the best results are obtained at a value of � that behaves according to Eq. (6), as predicted by the model.

© 2003 Wiley Periodicals, Inc. C O M P L E X I T Y 59



(fast) variables before the system as a whole can improve its
state. In this highly correlated state, slow variables block the
progression of fast variables, and a “jam” emerges. And our
asymptotic analysis of the flow equations for a jammed
system indeed reproduces Eq. (6).

GRAPH BIPARTITIONING PROBLEM
In the graph bipartitioning problem (GBP), variables xi are
given by a set of n vertices, where n is even. “Edges” connect
certain pairs of vertices to form an instance of a graph. The
problem is to find a way of partitioning the vertices into two
subsets, each constrained to be exactly of size n/2, such that
a minimal number of edges cut across the partition. The
cost function C(S) (called “cutsize”) counts the number of
such edges. Instances are typically parameterized by the
average connectivity c of its vertices.

To implement �-EO for the GBP, we attribute to each
vertex i a local cost �i � �bi/2, where bi is the number of
“bad” edges crossing the partition (equally shared with the
vertex on the other end of that edge). Note that Eq. (2) is
satisfied. The simplest neighborhood N(S) for the GBP is an
“exchange” of one vertex from each subset. For EO we
choose two numbers k1, k2 according to Eq. (5) and ex-
change xj1

and xj2
with j1 � �(k1) and j2 � �(k2) as in Eq. (4),

subject to the restriction that xj1
and xj2

be in opposite
subsets. For the sizes of graphs studied, a value of � �

1.4 –1.6 worked best [see Figure 1, middle]. Table 1 summa-
rizes �-EO’s results on large-n graphs, using � � 1.4 and
best-of-10 runs.

Studies on the average rate of convergence toward bet-
ter-cost configurations as a function of runtime t indicate
power-law convergence, roughly like C(Sbest)t � C(Smin) �

At�0.4 [13], also found by Ref. [18]. Of course, it is not easy
to assert for graphs of large n that those runs in fact con-
verge closely to the optimum C(Smin), but finite-size scaling
analysis for random graphs seems to justify that expectation
[13].

In an extensive numerical study on random and geomet-

ric graphs [11] we have shown that �-EO outperforms sim-

ulated annealing (SA) [19,20] significantly near phase tran-

sitions [21], where cutsizes first become nonzero. To this

end, we have compared the averaged best results obtained

for both methods for a large number of instances for in-

creasing n at a fixed parameter setting (� � 1.4 for EO).

Figure 2 shows that the SA implementation produces in-

creasingly worse results near the phase transition relative to

EO. In turn, it was found that EO reproduces many features

of the transition quite accurately [11].

SPIN GLASSES
Of significant physical relevance are the low temperature

properties of spin glasses [9], which we used to introduce

EO above. With this implementation, we have studied the

ground states of spin glasses in d � 3 and 4. Our data are

discussed in detail in [12]. A fit of our data with ed(n) �

ed(
) � A/n for n 3 
 predicts e3(
) � 1.7865(3) for d � 3

and e4(
) � 2.093(1) for d � 4. Both values are consistent

with the findings of Refs. [22–24], providing independent

confirmation of those results, with far less parameter

tuning.

More recently [25] we have used EO to test theoretical

predictions for the T � 0 properties of spin glasses on Bethe

lattices [26]. Ref. [26] proposed a replica symmetry breaking

(1RSB) solution for the ground state energy which signifi-

cantly differs from replica symmetric (RS) results. As Figure

3 shows, the EO results are consistent with the 1RSB results

and seem to rule out the RS solution.

Because EO never freezes into a local minimum, it is also

well suited to enumerate the distribution of near-optimal

states of a system, which is of great importance for the

low-temperature dynamics in glassy materials [27,28]. Thus,

we have also counted all lowest-energy states that EO could

find for the Bethe lattice up to n � 256 (when memory

became exhausted). The data extrapolate to a rather low

TABLE 1

Best Cutsizes (and Allowed Runtime) for a Testbed of Large Graphs

Large Graph GA �-EO Ref. [16] p-METIS

Hammond (n � 4720; c � 5.8) 90 (1s) 90 (42s) 97 (8s) 92 (0s)
Barth5 (n � 15606; c � 5.8) 139 (44s) 139 (64s) 146 (28s) 151 (0.5s)
Brack2 (n � 62632; c � 11.7) 731 (255s) 731 (12s) — 758 (4s)
Ocean (n � 143437; c � 5.7) 464 (1200s) 464 (200s) 499 (38s) 478 (6s)

GA results are the best reported [15] (at 300 MHz). �-EO results are from our runs (at 200 MHz). Comparison data for three of the large graphs are due
to results from heuristics in Ref. [16] (at 50 MHz). METIS is a partitioning program based on hierarchical decomposition instead of local search [17], obtaining
extremely fast deterministic results (at 200 MHz).
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entropy per spin of S/n � 0.009(2); there are no “free spins”
[28] in an odd-connected lattice.

To gauge EO’s performance for larger n, we have run our
implementation also on two 3d lattice instances, toruspm3-
8-50 and toruspm3-15-50, with n � 83 and n � 153, consid-
ered in the 7th DIMACS challenge for semi-definite prob-
lems [29]. Bounds [30] on the ground-state cost established
for the larger instance are Clower � �6138.02 (from semi-
definite programming) and Cupper � �5831 (from branch-
and-cut). EO found C(Sbest) � �6049 (or C/n � �1.7923), a
significant improvement on the upper bound an even lower

than e(
) from above. Furthermore, in that single run EO

found 116 different states of that energy with Hamming-

distances as far separated as 1500 mutually distinct spins!

For the smaller instance the bounds given are �922 and �912,

respectively, while EO finds �916 (or C/n � �1.7891). Here we

found 105 such states before we terminated the run. Although

this run (including sampling degenerate states!) took only a

few minutes of CPU (at 800 MHz), the results for the larger

instance require about 16 hours.
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