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We investigate the phase transition in vertex coloring on random graphs, using the extremal optimization
heuristic. Three-coloring is among the hardest combinatorial optimization problems and is equivalent to a
3-state anti-ferromagnetic Potts model. Like many other such optimization problems, it has been shown to
exhibit a phase transition in its ground state behavior under variation of a system parameter: the graph’s mean
vertex degree. This phase transition is often associated with the instances of highest complexity. We use
extremal optimization to measure the ground state cost and the “backbone,” an order parameter related to
ground state overlap, averaged over a large number of instances near the transition for random graphs of size
n up to 512. For these graphs, benchmarks show that extremal optimization reaches ground states and explores
a sufficient number of them to give the correct backbone value after aboutOsn3.5d update steps. Finite size
scaling yields a critical mean degree valueac=4.703s28d. Furthermore, the exploration of the degenerate
ground states indicates that the backbone order parameter, measuring the constrainedness of the problem,
exhibits a first-order phase transition.
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I. INTRODUCTION

The most challenging instances of computational prob-
lems are often found near a critical threshold in the prob-
lem’s parameter space[1], where certain characteristics of
the problem change dramatically. One such problem, already
discussed in Refs.[2–5], is the 3-coloring problem. Consider
a random graph[6] having n vertices andm edges placed
randomly among all possible pairs of vertices. The number
of edges emanating from each vertex is then Poisson-
distributed around a mean degreea=2m/n. To 3-color the
graph’s vertices, we need to assign one of three colors to
each vertex so as to minimize the number of “monochro-
matic” edges: those connecting vertices of like color. In par-
ticular, we may want to decide whether it is possible to color
the graph perfectly, i.e., having no monochromatic edges at
all. One way of doing this is using a backtracking assignment
procedure. Typically, if the mean degreea is low (for ex-
ample, when each vertex most likely has fewer than 3 neigh-
bors), one quickly finds a perfect coloring. If the mean de-
gree is high, one soon determines that monochromatic edges
are unavoidable after fixing just a small number of vertices.
At an intermediate degree value, however, some graphs are
perfectly colorable while others are not. In that case, for each
instance one must inspect many almost-complete colorings,
most of which do not fail until the last few vertex assign-
ments, before colorability can be decided[4,7]. For increas-
ing n, the regime of mean degree valuesa for which the
decision problem is hard becomes narrowly focused, while

the computational complexity of the backtracking algorithm
within this regime grows faster than any power ofn, signs of
the impending singularity associated with a phase transition.

Such findings have spawned considerable interest among
computer scientists and statistical physicists alike. On the
one hand, there appear to be close links to the properties of
spin glass systems[8]. Using replica symmetry breaking, it
was recently argued[2,9] that 3-coloring undergoes a col-
orability transition atacrit=4.69, heralded by the spontaneous
emergence ata=3.35 of a sizable 3-core[10] that becomes
over-constrained at the transition. This analysis shows, fur-
thermore, that the hardest instances to decide are located
between a clustering transition ata<4.42 andacrit. On the
other hand, attempts have been made to relate the nature of
the phase transition to complexity classifications developed
by computer scientists for combinatorial problems[11]: it
has been suggested that NP-complete problems, which are
hard to solve, may display a first-order phase transition while
easier problems lead to a second-order transition[12]. Such a
relation, while intriguing and suggestive, is bound to be
questionable in light of the fact that these phase transitions
are based on a notion of average-case complexity: for in-
stance, 3-coloring averaged over the ensemble of random
graphs. This is distinct from the computer science notion of
worst-case complexity used to define NP-completeness
[13,14]. In fact, it currently appears that a first-order transi-
tion is merely an indicator for the complexity of certain types
of algorithms: local searches[15]. A model problem with a
discontinuous transition,K-XORSAT [16,17], can be solved
by a fast global algorithm yet it is extremely hard for local
search or backtracking assignment algorithms.

In this paper we consider the 3-coloring problem men-
tioned above. The problem is among the hardest combinato-
rial optimization problems, making it difficult to study the
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asymptotic properties of its phase transition with exact meth-
ods. It is also of considerable interest in its own right as a
model for many practical optimization problems[11], and it
is of some physical relevance due to its close relation to Potts
anti-ferromagnets[18]. Some aspects of the 3-coloring phase
transition have previously been explored[3–5]. In particular,
Culberson and Gent[5] have studied the phase transition for
random graphs withexact methods by “growing” random
graphs of sizenø225, sequentially adding random edges to
an existing graph to increasea, and checking along the way
whether the graph is still colorable. Once a graph becomes
uncolorable, it is discarded from the list of growing graphs,
so the set of graphs becomes increasingly less representative
of the ensemble when passing through the transition. In the
process, these authors have evaluated the constrainedness of
the variables in the graph, studying in detail many aspects of
the approach to the transition. However, the main quantity
they measure, called the “spine”[19], is in general an upper
bound on the order parameter we consider here, since con-
tributions from uncolorable graphs are neglected.

We investigate the properties near the phase transition by
applying an optimization heuristic calledextremal optimiza-
tion (EO) [20,21]. EO was recently introduced as a general-
purpose optimization method based on the dynamics of
driven, dissipative systems[22]. Our study illustrates that
EO is capable of determining many ground-state properties
efficiently, even at the phase transition[23]. EO performs a
local neighborhood search that does not get stuck in local
minima but proceeds to explore near-optimal configurations
broadly. Hence, it is particularly well suited to measure glo-
bal properties of the configuration space. Here, we use it to
estimate the “backbone,” an overlap property between the
highly degenerate ground state configurations that provides a
more convenient order parameter than measuring mutual
overlaps of all ground states[12]. While EO is not exact,
benchmark comparisons with exactly-solved, large instances
justify our confidence in its results. Our biggest uncertainties
at largen originate from the statistical error.

Our results indicate that the transition in the backbone
size is of first order, though with only a small discontinuity.
In fact, the discontinuity does not arise uniformly for all
graphs in the ensemble, but is due to a fraction of instances
that have a strong backbone of a characteristic size while the
rest have hardly any backbone at all.

Using the procedure of Ref.[24] to control the quality of
finite size scaling for the ground state cost function, we es-
timate the location of the transition asacrit<4.703s28d,
where the numbers in parentheses denote the statistical error
bar in the final digits. This is consistent with the presumably
correct value ofa=4.69 given by replica symmetry breaking
methods[2] (see also Refs.[3,4] for earlier estimates). We
measure the size of the scaling window asn−1/n with n
=1.43s6d, close to the value of 1.5 estimated for 3-SAT[25],
although it may be that trivialn−1/2-fluctuations from the
variables not belonging to the 3-core dominate at much
largern than considered here[26].

In the following section, we introduce the problem of
3-coloring in more detail and discuss the relevant observ-
ables we measure in order to analyze the phase transition. In
Sec. III we discuss our EO implementation and its properties.

In Sec. IV we present the results of our measurements, and
we conclude with Sec. V.

II. 3-COLORING OF RANDOM GRAPHS

A random graph[6] is constructed from a set ofn vertices
by assigning edges tom=an/2 of the s n

2
d pairs of vertices

with equal probability, so thata is the average vertex degree.
Here, we will consider only the regime of “sparse” random
graphs wherem=Osnd anda=Os1d. The goal of graph ver-
tex coloring is to label each vertex with a different color so
as to avoid monochromatic edges.

Three different versions of the coloring problem are of
interest. First, there is the classic problem of determining the
“chromatic number” for a given graph, i.e., the minimum
number of colors needed to color the graph while avoiding
monochromatic edges. It is very difficult to devise a heuristic
for this problem[27]. In the other two versions, we are given
a fixed numberK of colors to select from. The decision prob-
lem, K-COL, addresses the question of whether a given
graph is colorable or not. Finally, the optimization problem,
MAX- K-COL, tries to minimize the number of monochro-
matic edges(or equivalently maximize the number of non-
monochromatic edges; hence its name). Clearly, if we define
the number of monochromatic edges as the “cost” or “en-
ergy” of a color assignment, determining whether the mini-
mal cost is zero or nonzero corresponds to solving the deci-
sion problemK-COL, so finding the actual cost of the ground
state is always at least as hard. Much of the discussion re-
garding computational complexity near phase transitions in
the computer science literature is focused on the decision
problem [3,5]. From a physics perspective, it seems more
intuitive to examine the behavior of the ground states as one
passes the transition. Accordingly, we will focus on the
MAX- K-COL problem in this paper.

All these versions of coloring are NP-hard[11], and thus
computationally hard in the worst case. To determine exact
answers would almost certainly require a computational time
growing faster than any power ofn. Thus, extracting results
about asymptotic properties of the problems is a daunting
task, calling for the use of accurate heuristic methods, as
discussed in the following section.

The control parameter describing our ensemble of in-
stances is the average vertex degreea of the random graphs.
Constructing an appropriate order parameter to classify the
transition is less obvious. The analogy to spin-glass theory
[8,28] suggests the following reasoning. In a homogeneous
medium possessing a single pure equilibrium state, the mag-
netization provides the conjugate field for analyzing the fer-
romagnetic transition. For our 3-coloring problem, the disor-
der induced by the random graphs leads to a decomposition
into many coexisting but unrelated pure states with a distri-
bution of magnetizations. Since the colors correspond to the
spin orientations in the related Potts model, in principle we
need to determine, for each graph, the overlap between all
pairs of ground state colorings. Finally, this distribution has
to be averaged over the ensemble. To simplify the task, one
can instead extract directly the “backbone,” which is the set
of variables that take on the same state inall possible ground
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state colorings of a given instance[12]. But even determin-
ing the backbone is a formidable undertaking: it requires not
only finding a lowest cost coloring but sampling a substantial
number of those colorings for each graph, since the ground
state entropy is extensive.

Another level of difficulty arises due to the invariance of
the ground states under a global color permutation. Thus, in
the set of all ground states, each vertex can take on any color
and the backbone as defined above is empty. To avoid this
triviality, one may redefine the backbone in the following
way. Instead of considering individual vertices, consider all
pairs of vertices that are not connected by an edge[5]. De-
fine the pair to be part of thefrozenbackbone if its vertices
are of like color(monochromatic) in all ground state color-
ings, so that the presence of an edge there would necessarily
incur a cost. Define the pair to be part of thefreebackbone if
its vertices are of unlike color(nonmonochromatic) in all
ground state colorings, so that the presence of an edge there
would never incur any cost. Since the fraction of pairs that
belong to the frozen backbone measures the constrainedness
of an instance, it is the relevant order parameter. We have
also sampled the free backbone. As shown in Sec. IV, both
seem to exhibit a first-order transition, though the jump for
the frozen backbone is small.

By definition, the location of the transition is determined
through a(second-order) singularity in the cost functionC:
the cost is asymptotically vanishing below the transition, it is
continuous at the transition, and above it is always nonzero,
We have therefore measured the ground state cost, averaged
over many instances, for a range of mean degree valuesa
and sizesn.

III. EXTREMAL OPTIMIZATION

A. EO implementation

To investigate the phase transition in 3-COL, we employ
the extremal optimization heuristic(EO) [20]. The use of a
heuristic method, while only approximate, allows us to mea-
sure observables for much larger system sizesn and with
better statistics then would be accessible with exact methods.
We will argue below that we can obtain optimal results with
sufficient probability that even systematic errors in the ex-
ploration of ground states will be small compared to the
statistical sampling error.

Our EO implementation is as follows. Assume we are
given a graph with a(however imperfect) initial assignment
of colors to its vertices. Each vertexi hasai edges to neigh-
boring vertices, of which 0øgi øai are “good” edges, i.e., to
neighbors of a different color(not monochromatic). We de-
fine for each vertex a “fitness,”

li =
gi

ai
P f0,1g, s1d

and determine a permutationP (not necessarily unique) over
the vertices, satisfying

lPs1d ø lPs2d ø . . . ø lPsnd. s2d

At each update step, EO draws a numberk from a distribu-
tion,

Pskd , k−t s1 ø k ø nd, s3d

with a bias toward small numbers. A vertexi is selected from
the ordered list in Eq.(2) according to its “rank”k, so that
i =Pskd. Vertex i is updatedunconditionally, i.e., it always
receives a new color, selected at random from one of the
other colors. As a consequence, vertexi and all its neighbors
change their fitnessesl and a new rankingP needs to be
established. Then, the update process starts over with select-
ing a new rankk, and so on until some termination condition
is reached. Along the way, EO keeps track of the configura-
tion with the best coloring it has visited so far, meaning the
one that minimizes the number of monochromatic edges,C
=oisai −gid /2.

Previous studies have found that EO obtains near-optimal
solutions for a variety of hard optimization problems[22] for
a carefully selected value oft [29–31]. For 3-COL, initial
trials have determined that the best results are obtained for
the system sizesn=32,64, . . . ,512 at a(fixed) value of t
<2.2. This rather high value oft [30] helps explore many
low-cost configurations efficiently; if we merely wanted to
find one low-cost solution, larger values ofn could have
been reached more efficiently at lowert.

It should be noted that our definition of fitness does not
follow the generic choiceli =gi /2 giving a total configura-
tion cost ofC=const−oili. While that formulation sounds
appealing, and does produce results of the same quality, our
choice above produces the same results somewhat faster;
there appears to be some advantage to treating all vertices,
whose individual degreesai are Poisson-distributed around
the meana, on an equal footing. Furthermore, our imple-
mentation limits itself to partially sorting the fitnesses on a
balanced heap[20], rather than ranking them perfectly as in
Eq. (2). In this way, the computational cost is reduced by a
factor of n while performance is affected only minimally
[20].

B. Measuring the backbone

The backbone, described in Sec. II, is a collective prop-
erty of degenerate ground states for a given graph. Thus, in
this study we are interested in determining not only the cost
C of the ground state, but also a good sampling ofall pos-
sible ground state configurations. A local search with EO is
ideally suited to probe for properties that are broadly distrib-
uted over the configuration space, since for small enought it
does not get trapped in restricted regions. Even after EO has
found a locally minimal cost configuration, it proceeds to
explore the configuration space widely to find new configu-
rations of the same or lower cost, for as long as the process
is run.

Against these advantages, one must recognize that EO is
merely a heuristic approximation to a problem of exponential
complexity. Thus, to ensure the accuracy of our measure-
ments, we devised the following adaptive procedure. For
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each graph, starting from random initial colorings, EO was
run for n3 update steps, using a minimum of 5 different re-
starts. For the lowest cost seen so far, EO keeps a buffer of
up ton/4 most recently visited configurations with that cost.
If it finds another configuration with the same cost, it quickly
determines whether it is already in the buffer. If not, EO adds
it on top of the buffer(possibly “forgetting” an older con-
figuration at the bottom of the buffer). Thus, EO does not
keep a memory of all minimal cost configurations seen so
far, which for ground states can have degeneracies of.106

even atn=64.
Instead of enumerating all ground states exhaustively, EO

proceeds as follows. When it finds a new, lowest cost con-
figuration, it assumes initially that all pairs of equally col-
ored vertices are part of the frozen backbone and all other
pairs are part of the free backbone. If another configuration
of the same cost is found and it is not already in the buffer,
EO checks all of the pairs in it. If a pair has always been
frozen (free) before and is so now, it remains part of the
frozen (free) backbone. If a pair was always frozen(free)
before and it is free(frozen) in this configuration, it is elimi-
nated from both backbones. If a pair has already been elimi-
nated previously, no action is taken. In this way, certain
ground-state configurations may be missed or tested many
times over, without affecting the backbones significantly.

Eventually, even if new and unrecognized configurations
of the lowest cost are found, no further changes to either
backbone are likely to occur. This fact motivates our adap-
tive stopping criterion for EO. Assume the current backbone
was last modified in ther0th restart. Then, for this graph EO
restarts for a total of at leastr =r0+maxhr0,5j times, termi-
nating only when there have been no updates to the back-
bone over the previous maxhr0,5j restarts. Of course, every
time a new, lower-cost configuration is found, the buffer and
backbone arrays are reset. Ultimately, this procedure leads to
adaptive runtimes that depend on the peculiarities of each
graph. The idea is that if the lowest cost state is found in the
first start and the backbone does not change over 5 more
restarts, one assumes that no further changes to it will ever
be found by EO. However, if EO keeps updating the back-
bone through, say, the 20th restart, one had better continue
for 20 more restarts to be confident of convergence. The
typical number of restarts was about 10, while for a few
larger graphs, more than 50 restarts were required.

C. Benchmarking

A majority of our computational time is spent merely con-
firming that the backbones have converged, since during the
final maxhr0,5j restarts nothing new is found. Nevertheless,
EO still saves vast amounts of computer time and memory in
comparison with exact enumeration techniques. The trade-off
lies in the risk of missing some lowest cost configurations, as
well as in the risk of never finding the true ground state to
begin with. To estimate the systematic error resulting from
these uncontrollable risks, we have benchmarked our EO
implementation against a number of different exact results.

First, we used a set of 700 explicitly 3-colorable graphs
over 7 different sizes,n=75,100, . . . ,225(100 graphs per

value of n) at a=4.7, kindly provided by Culberson, for
which exact spine values[19] were found as described in
Ref. [5]. On colorable graphs such as these, the spine is
identical to the backbone. Our EO implementation correctly
determined the 3-colorability of all but one graph, and repro-
duced nearly all backbones exactly, regardless of sizen.
Over all graph sizes, EO failed to locate enough colorable
configurations on at most 5 graphs out of 100, and in those
cases overestimated either backbone fraction by less than
4%. Only atn=225 did EO miss the colorability of a single
graph to findC=1 instead, thereby underestimating both
backbones.

In a different benchmark, containing colorable as well as
uncolorable graphs, we generated 440 random graphs over 4
different sizes,n=32, 64, 128, 256 and 11 different mean
degree valuesa=4.0,4.1, . . . ,5.0(10 graphs per value ofn
anda). We found the exact minimum cost and exact fraction
of pairs belonging to the backbone for these graphs, by re-
moving edges until an exact branch-and-bound code due to
Trick [32] determined 3-colorability. For example, finding
that a graph had a ground state cost ofC=2 involved con-
sidering all possible 2-edge removals until a remainder graph
was found to be 3-colorable. We then added edges to vertex
pairs in this remainder graph, checking whether the graph
stayed colorable: if so, that pair was eliminated from the
frozen backbone. Likewise, we merged vertex pairs, check-
ing whether the graph stayed colorable: if so, that pair was
eliminated from the free backbone. We repeated the proce-
dure on all colorable 2-edge-removed remainder graphs, po-
tentially eliminating pairs from the frozen and free back-
bones each time. Comparing with the exact testbed arising
from this procedure shows that, for all graphs, EO found the
correct ground state cost. Moreover, EO overestimated the
frozen backbone fraction on only 4 graphs out of 440(2 at
n=128 and 2 atn=256, in both cases ata=4.6), and by at
most 0.004. This leads to a predicted systematic error that is
at least an order of magnitude smaller than the statistical
error bars in the results we present later. The free backbone
results are slightly worse, overestimating the backbone frac-
tion on 36 graphs out of 440, by an average of 0.003(though
in one case, atn=256 anda=4.6, by as much as 0.027). The
resulting systematic error, however, is still small compared to
the statistical error bars in our main results.

D. Runtime scaling

It is also instructive to study the running times for EO,
how they scale with increasing graph size, and how they
compare with the exact algorithm we have used for bench-
marking. In our EO implementation, we have measured the
average number of update steps it took(1) to find the ground
state cost for the first time,ktGSl, and(2) to sample the back-
bone completely,ktBBl. Note thattBB, corresponding to re-
start r0 in Sec. III B, is always less than half the total time
spent to satisfy the stopping criterion for an EO run de-
scribed above. BothtGS and tBB can fluctuate widely for
graphs of a givenn anda, especially whenC.0. However,
since our numerical experiments involve a large number of
graphs, the average timesktGSl and ktBBl are reasonably
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stable. Furthermore,ktGSl andktBBl show only a weak depen-
dence ona, varying by no more than a factor of 2:ktGSl
increases slowly for increasinga, andktBBl has a soft peak at
ac [33]. Thus, for eachn we average these times overa as
well, leading only to a slight increase in the error bars(on a
logarithmic scale). We have plotted the average quantities in
Fig. 1 on a log–log scale as a function ofn. It suggests that
the time EO takes to find ground states increases exponen-
tially but very weakly so. Once they are found, EO manages
to sample a sufficient number of them in aboutOsn3.5d up-
dates to measure the backbone accurately.

By contrast, one cannot easily quantify the scaling behav-
ior of running times for the exact branch-and-bound bench-
marking method. As the ground state cost increases, the com-
plexity of the method quickly becomes overwhelming, and
rules out using it to measure average quantities with any
statistical significance. Clearly, branch-and-bound itself has
exponential complexity for determining colorability. For the
sizes studied here, however, the exponential growth inn ap-
pears in fact sub-dominant to theOsnC+2d complexity of
evaluating the backbone for a graph with nonzero ground
state costs. WhenC=1 or 2, the combinatorial effort is man-
ageable, but atn=256, graphs just at the transitionsa
=4.70d reachCù3 and the algorithm takes weeks to test all
remainder graphs. From this comparison, one can appreciate
EO’s speed in estimating the backbone fractions, however
approximate!

IV. NUMERICAL RESULTS

With the EO implementation as described above, we have
sampled ground state approximations for a large number of
graphs at each sizen. In particular we have considered, over
a range ofa, 100 000 random graphs of sizen=32, 10 000 of

sizen=64, 4000 of sizen=128, and 1000 size ofn=256. By
averaging over the lowest costs found for these graphs, we
obtain an approximation for average ground state energies
kCl as a function ofa and n, as shown in Fig. 2. We have
also sampled 160 instances of sizen=512, which provided
enough statistics for the backbone though not for the ground
state costs.

With the finite size scaling ansatz,

kCl , ndffsa − acritdn1/ng, s4d

systematically applied[24], it is possible to extract precise
estimates for the location of the transitionac and the scaling
window exponentn. In the scaling regime, one might assume
that the cost for the fixed argument of the scaling function is
independent of the size, i.e.,d=0, indicated by the fact that
for all values ofn the cost functions cross in virtually the
same point. Hence, in results we have previous reported[21],
we obtained what appeared to be the best data collapse by
fixing d=0 and choosingacrit=4.72s1d andn=1.53s5d, with
the error bars in parentheses being estimates based on our
perception of the data collapse. But a more careful auto-
mated fit to our data, provided to us by Bhattacharjee, gives
d<−0.001s3d, acrit=4.703s28d, andn=1.43s6d with a toler-
ance level ofh=1% (see Ref.[24]). While these fits are
consistent with our previous results, they are also consistent
with and much closer to the presumably exact result of
acrit=4.69. . . [2], and the error estimates are considerably
more trustworthy.

The scaling window is determined by two competing con-
tributions: for the intermediate values ofn accessible in this
study it is dominated by nontrivial contributions arising from
the correlations amongst the variables, which yieldsn
<1.43s6d, similar to satisfiability problems[25]. However,
for sufficiently largen, Wilson [26] has shown thatnù2,
due to intrinsic features of the ensemble of random graphs.
The argument may be summarized as follows. Sincea
=Os1d and vertex degrees are Poisson-distributed with mean
a, a finite fraction of vertices in a random graph have de-
grees 0, 1, or 2(those not belonging to the 3-core[10]) and
thus cannot possibly cause monochromatic edges. But this
finite fraction itself undergoes(normal) ,1/În fluctuations,

FIG. 1. Log–log plot of the average timektGSl to reach the
lowest cost state found(circles) and ktBBl to sample the backbone
(squares), in units of EO-update steps, as a function of system size
n. The dashed line, 0.003n3.5 exps0.004nd gives a reasonable fit to
ktGSl—after having assumed then3.5 power law for the fit—and the
dashed-dotted line, 0.3n3.5, is a fit obtained forktBBl. (Taking these
crude fits at face value, merely reaching the first good ground state
approximations would begin to dominate the runtime at aboutn
<103).

FIG. 2. Plot of the average cost as a function of the vertex
degreea. After correct finite size scaling, the data collapses onto a
single scaling function, as shown in the inset. The fit givesacrit

<4.70, marked by a vertical line.
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which limit the narrowing of the cost function’s scaling win-
dow at largen. Such vertices make up about 15% of the total
near acrit, so we estimate the crossover to occur atn−1/n

,0.15n−1/2 or n<104−105, assuming all other constants to
be close to unity.

Our next main result is the estimate of the backbone near
the phase transition, as described in Sec. III B. We have
sampled the frozen and the free backbones[5] separately.
Our results show the fraction of vertex pairs in each back-
bone, and are plotted in Fig. 3. For the free backbone, con-
sistent with our definition, we do not include any pairs that
are already connected by an edge. Although they make up
only Os1/nd of the pairs, the inclusion of these would cause
a significant finite size effect when the backbone is small,
and only by omitting them does the free backbone vanish for
a,acrit. In principle, according to our definition one should
also exempt from the frozen backbone any pairs that are
connected by a monochromatic edge in all ground state con-
figurations, but atacrit their impact on the backbone is only
Os1/n2d.

As Fig. 3 shows, both backbones appear to evolve toward
a discontinuity for increasingn. The backbone fraction
comes increasingly close to vanishing belowacrit, followed
by an increasingly steep jump and then a plateau that, to
within statistical noise, appears stable at largen. The height
of the plateau atacrit suggests that on average about 6% of
all pairs are frozen and close to 20% are free, with both
values rising further for increasing degree. The “jump” in the
frozen backbone is somewhat smaller than that in the free
backbone, adding a higher degree of uncertainty to that in-
terpretation, although still well justified within the error bars.
Indeed, given the considerable ground state degeneracies, it

would be surprising if the frozen backbone were large.
A more detailed look at the data(Fig. 4) suggests that the

distribution of frozen backbone fractions for individual in-
stances is bimodal at the transition, i.e., about half of the
graphs have a backbone well over 10% while the other half
have no backbone at all, leading to the average of 6% men-
tioned above. Furthermore, there appears to be some inter-
esting structure in the backbone discontinuity, which may be
significant beyond the noise. Note in Fig. 3 that for largern,
the increase of the frozen backbone stalls or even reverses
right after the jump before rising further. This property coin-
cides with the emergence of nonzero costs in the ground state
colorings(see Fig. 2). The sudden appearance of monochro-
matic edges seems initially to reduce the frozen backbone
fraction: typically there are numerous ways of placing those
few edges, often affecting the most constrained variables
pairs and eliminating them from the frozen backbone. Simi-
lar observations have been made by Culberson[5]. Accord-
ing to this argument, only the frozen backbone should exhibit
such a stall(or dip). Indeed, Fig. 3 shows a less hindered
increase in the free backbone, though the difference there
may purely be due to statistical noise.

FIG. 3. Plot of the frozen(top) and the free(bottom) backbone
fraction as a function of the vertex degreea. The critical point
acrit<4.70 is indicated by a vertical line.

FIG. 4. Plot of the typical frozen(top) and free(bottom) back-
bone probability, obtained here from then=128 graphs. For mean
degree valuesa,acrit, graphs are almost certain to have a vanish-
ing backbone, both frozen and free. Aboveacrit a majority of graphs
still do not exhibit any backbone, but a finite fraction of graphs
display a sizable backbone fraction, clustered at a characteristic
size. The average backbones plotted in Figs. 3 represent the average
of these apparently bimodal distributions. This qualitative picture
appears to hold for increasingn, althoughn.128 data are some-
what noisy.

S. BOETTCHER AND A. G. PERCUS PHYSICAL REVIEW E69, 066703(2004)

066703-6



V. CONCLUSIONS

We have considered the phase transition of the MAX-3-
COL problem for a large number of instances of random
graphs, of sizes up ton=512 and over a range of mean
degree valuesa near the critical threshold. For each instance,
we have determined the fraction of vertex pairs in the frozen
and free backbones, using an optimization heuristic called
extremal optimization(EO) [20]. Based on previous studies
[23], EO is expected to yield an excellent approximation for
the cost and the backbone. Comparisons with a testbed of
exactly-solved instances suggest that EO’s systematic error is
negligible compared to the statistical error.

Using a systematic procedure for optimizing the data col-
lapse in finite size scaling[24], we have argued that the
transition occurs atacrit=4.703s28d, consistent with earlier
results[3–5,21] as well as with a recent replica symmetry
breaking calculation yielding 4.69[2]. We have also studied
both free and frozen backbone fractions around the critical
region. A simple argument[12] demonstrates that below the
critical point the backbone fraction always vanishes for large
n. At and above the critical point, neither backbone appears
to vanish, suggesting a first-order phase transition. This is in
close resemblance toK-SAT for K=3 [12]; indeed, both are
computationally hard at the threshold.

Even though the backbone is defined in terms of
minimum-cost solutions, its behavior appears to correlate
more closely with the complexity of finding a zero-cost so-
lution (solving the associated decision problem) at the
threshold. One possible explanation is that instances there
have low cost, so finding the minimal cost is only polynomi-
ally more difficult than determining whether a zero-cost so-
lution exists. Interestingly, our 3-coloring backbone results
mirror those found for the spine[5,15], an upper bound on
the backbone that is defined purely with respect to zero-cost
graphs. The authors of that study speculate that at the thresh-
old, although the spine is discontinuous, the backbone itself
might becontinuous. Our results contradict this speculation,
instead providing support for a relation—albeit restricted—
between backbone behavior and average-case complexity.
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