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How Do Ovarian Follicles Interact? 
A Many-Body Problem with Unusual Symmetry 
and Symmetry-Breaking Properties 
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The assumption that hormonal feedback regulates ovarian follicle growth is 
used to formulate a many-body problem in which interactions are spatially 
independent. This mechanism of interaction is shown to be sufficient to account 
for the regulation of ovulation number. A method is also developed to test if this 
assumption is consistent with the observed spatial distribution of follicles in the 
Rhesus monkey ovary. 
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1. I N T R O D U C T I O N  

Many-body problems where interactions are not spatially dependent are 
rare in physics and chemistry. In the endocrine system, however, spatially- 
independent many-body interaction arises in a natural way. Here chemical 
cell-to-cell signaling is mediated through hormones and a commonly 
shared circulation rather than by short-range diffusion. This can lead to an 
unusual degree of symmetry in the equations that describe the interaction. 
In higher vertebrates this is exemplified by the hormonal feedback system 
which controls the number of ovarian follicles that periodically reach full 
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maturity at the time of ovulation. This feedback system is primarily respon- 
sible for regulating the litter sizes that are characteristic for each mam- 
malian species or breed. The observation that ovulation number per cycle 
is unchanged after an ovary is surgically removed suggests that this number 
is under physiological control. In fact, it has been repeatedly demonstrated 
in several mammalian species that ovulation number per cycle is nearly 
independent of the amount of ovarian tissue removed or the timing of its 
removal.(~'2) 

The interacting units in the many-body problem that we will consider 
are developing ovarian follicles. A large reservoir of follicles is formed early 
in embryonic life. Initially each follicle is a spherical structure consisting of 
an egg cell in the center and a single surrounding layer of supporting cells 
(granulosa cells). After birth no new follicles are added to the reservoir and 
its size decays exponentially as individual follicles initiate growth and 
development. Follicle activation and growth is characterized by division of 
the granulosa cells to form additional layers that surround the egg. In 
humans the size of the immature reservoir is on the order of 10 6 follicles 
at birth and its half-life is approximately 10 years. Most developing follicles 
do not fully mature. After attaining different sizes the overwhelming 
majority of follicles (greater than 99% in humans) atrophy, that is, the 
cells within the follicle die and are removed, in a process called atresia. 
Eventually the entire follicle (including its egg) disappears from the ovary. 
The small number of developing follicles that do not become atretic but 
instead reach full maturity and release their egg during each ovulation cycle 
is the regulated ovulation number. 

A hormonal mechanism for follicle interaction has been established. 
This interaction mechanism involves a feedback loop between ovarian 
follicles and the pituitary-hypothalamus. Removing the pituitary from an 
adult female results in the arrest of follicle growth. In such an animal, 
relatively immature follicles can be made to resume growth and ovulate by 
injecting extracts containing varying proportions of two purified pituitary 
gonadodropic hormones, FSH (follicle-stimulating hormone) and LH 
(luteinizing hormone). Maturation to ovulation can occur even when the 
nerve supply to the ovary is severed and it is transplanted to a different site 
in the organism/3~ Because a developing follicle secretes the hormone 
estradiol into the circulation at a rate that increases as it grows, follicle 
estradiol secretion rate can be used as a measure of follicle maturity. In 
1981, Zeleznik showed that pituitary gonadotropin secretion is very 
sensitively inhibited by circulating estradiol concentrations at times when 
follicular development and the gradual emergence of ovulatory follicles are 
occurring. (4) This establishes a feedback mechanism where every estradiol- 
secreting follicle affects the maturation rate of every other such follicle (and 
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even itself) through its contribution to the circulating estradiol concentra- 
tion and the effect that this hormone has on gonadotropin release. The 
following model shows that such interaction can account for the regulation 
of ovulation number. 

2. M O D E L  F O R M U L A T I O N  

Let h~(t) and h2(t), respectively, represent the concentrations of FSH 
and LH as functions of time in the circulation. We assume that these 
hormones are secreted into a blood volume V at rates a~ and a2 that 
depend upon the circulating concentration of estradiol X. If 71 and 72 are 
the first-order circulatory clearance constants for these hormones, then 

dt ~ l ( X ) - 7 ~ h l  (1) 

and 

dt o 2 ( X )  - -  72h2 (2) 

If we measure the maturity of the ith follicle at time t by its estradiol 
secretion rate into the circulation si(t), then we have a conservation 
equation for estradiol similar to (1) and (2), 

V dX ~ s j -73X (3) -y?  = 
J = l  

where the summation is over all N estradiol-secreting follicles and ]23 is the 
circulatory clearance constant for estradiol removal. Assuming that follicle 
maturation rate depends on both follicle maturity and the circulating 
concentrations of FSH and LH yields 

ds__2 = 
dt gi(si, hi, h2) (4) 

In most mammalian species, follicle maturation occurs over a period 
of days to weeks. In comparison, the half-life of estradiol, FSH, and LH in 
the circulation and the response time of the pituitary hypothalamic axis to 
circulating estradiol are short (a few minutes to an hour or two, depending 
on the species)J s lo7 This means that the dynamics of (4) will be slow com- 
pared to (1) (3) and therefore the solutions of (1)-(3) will always be near 
equilibrium on the time scale set by (4). If we make this quasiequilibrium 
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approximation for (1)-(3), then this produces the following simplified 
dynamical system: 

where 

d x  i 
d-~ = g,(xi, X), i= 1 ..... N (5) 

N 
X =  y" X~ (6) 

j = l  

s~(t) 
x , ( t ) -  (7) 

73 

is the concentration that the ith follicle supports in the circulation at time 
t. Since x~(t) is directly proportional to s, (t), it is an equivalent measure of 
follicle maturity. The system (5)'-(6) is connected to (1)-(4) by (7) and 

O. l()f. ) o 2 ( X ) ~  
g~(xi, X ) =  gi 73xi, , (8) 

71 72 J 

Note that the effects of FSH and LH are still present in the system (5)-(6). 
Their effects are represented implicitly by (8). 

The function gi(x, X) in (5) determines the ith follicle's maturation 
rate for any given maturity x and circulating estradiol concentration X. 
Thus, any particular choice for gi(x, X) in the model represents a possible 
program of follicle development. Since it is reasonable to assume that 
follicles in a given individual inherit a similar plan of growth, we will first 
consider the idealization where every model follicle of the system (5)-(6) 
inherits the same developmental program, 

g:(x, X ) = f ( x ,  X) for all i (9) 

Substituting (9) into (5) finally yields the form of the system we will 
analyze: 

d x  i 
- f ( x , ,  X), i= 1,..., N (10) 

dt 

N 
x =  y~ x: (11) 

j= l  

In the system (10)-(11) the maturation of developing follicles is coupled 
through the variable X. This variable is a symmetric function (the sum 
function) of these maturities and this symmetry reflects the idea of inter- 
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action through circulatory feedback. Because f depends on x as well as AT, 
model follicles with different maturities will, in general, develop at different 
rates even though every model follicle is assumed to have the same matura- 
tion program ( f )  and at any instant receive the same circulating feedback 
signal X. 

3. T H E O R Y  

We do not have a theory for analyzing the solutions to (10) (11) for 
arbitrary f and initial conditions. It is possible, however, to analyze the 
qualitative behavior of the solutions to the initial value problem for a 
system of fixed but arbitrary size N, and for a limited class of interaction 
functions. (H-13~ As a result of this analysis, we will demonstrate explicit 
follicle maturation functions that are capable of regulating ovulation 
number under more realistic physiological conditions where the number of 
developing follicles N in the interacting follicle population changes in time 
as new follicles initiate growth from a dormant reservoir and where f is 
similar but not identical for each interacting follicle. 

We now consider the system (10)-(11) when x~(0)--xi0, i =  1 ..... N, 
and when f takes the form 

f ( x i ,  X) = xiq3(xi, X) 
(12) 

where ~ is any C 1 positive-valued function and p and ~ are arbitrary C 1 
functions defined on appropriate physiological domains. For ~5 and p this 
domain is X > 0 ,  since negative concentrations have no physical meaning 
and the domain for ~ is [0, 1 ] because no follicle at any time t can support 
a circulating concentration x i ( t )  greater than the total X(t ) .  Since f in (12) 
remains unchanged when any constant is subtracted from ~ and added to 
p, we will assume, without losing generality, that ~(0)= 0. The function ~b 
can be interpreted as a relative growth rate. For  a given value of X 

In 2 
ZD(X, X )  -= - -  (13) 

~(x, x) 

represents the time it would take for a follicle with maturity x to double its 
estradiol secretion rate. If, for example, the estradiol secretion rate of a 
follicle were directly proportional to the number of estradiol-secreting 
(granulosa) cells it contained, then ~b would determine the doubling times 
of these cells as a function of follicle maturity (estradiol production rate) 
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and the circulating concentrations of FSH and LH (represented implicitly 
by X). 

Since 6 in (12) is assumed to be positive, a new time variable ~ can be 
defined by 

fo dz r(t)= 6(X(s)) ds, or 7 = 6 ( X ( t ) )  (14) 

If we use this time scale and also scale follicle maturity so that it is a 
fraction between 0 and 1 by defining 

yi(r)~_~xi(t(r))~ 1/2 
[_Z(t(z))~ ' i =  1 ..... N (15) 

then the system (10)-(12) can be expressed in the following form: 

dY 
dr - -Vs V(Y) 

v(Y)  = - y;_ ,~(s 2) ds 

u (16) 

S={Y:  ~ Y 2=1}̀ 
i=1 

Y(0)= Yo~S 

where Y= (Yl,..., YN)" 
The dynamical system (16) is a gradient system on the unit sphere S 

in ~}{N and therefore can be given a rather simple geometric interpretation. 
Any solution curve Y(z) of the system can be viewed as being generated by 
a point moving on S with velocity dY/dr. If V(Y) defines the height above 
the surface S at Y, then V generates a relief map on the sphere S. Note that 
V depends only on ~ and not on the 6 or p functions. At any point Y on 
S, - dY/dr is the gradient of V on S (V s V). More precisely, 

V s V = V V -  (VV, Y) Y (17) 

which says that VsV can be calculated from the gradient of V, by 
projecting it onto the tangent plane of S at Y. (Since the domain of ~ is 
the unit interval [0, 1], the domain of V is the unit cube in 9iN.) Let 
define V as a function of r along a solution curve Y(r). Then, 

dF" dV(Y(r)) ( V V ( y ) , d Y )  
& -  dr = ~ = -[IVsV(Y)I[2<~O (18) 
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which implies that V is strictly decreasing for nonequilibrium solutions. 
Limiting values of V occur at equilibria of the system. Geometrically these 
correspond to those points Ye that are critical values of V on S. In general, 
when there is a finite number of equilibria and these are nondegenerate 
(zero is not an eigenvalue of the linearization) then every solution curve of 
a gradient system will approach an equilibrium as ~--* oo. Therefore, a 
solution cannot be a closed curve or a path that continually wanders in 
some manifold of S: all solutions dissipate asymptotically in time to an 
equilibrium. Since (18) shows that all nonequilibrium solutions move 
"downhill," stable equilibria of the system will correspond to relative 
minima of V on S where no local path of further descent exists. 

The components of critical points Ye of V on S satisfy 

'E 2,j - 2  yi ~(y~)_  y2~(y =0,  i =  1 ..... N (19) 
i = 1  

Therefore the equilibria Ye of the system (16) can be described in the 
following way. An equilibrium with M nonzero coordinates will be called 
an M-fold equilibrium. The point 

Ye = (al, a2,..., aM, 0 ..... 0) (20) 

M N - - M  

is an M-fold equilibrium if the ai ~ 0, i = 1 ..... M, 

M 

a~ = 1 (21) 
i = 1  

and ~ maps every a 2 to a common value, that is, if 

2(Ye)-- ~(a~) for all i = 1  ..... M (22) 

An easy way to satisfy (22) is to make all the ai equal. This yields equilibria 
of the form 

Ye = ( 1 / X ~ ,  1 /x/M ..... 1/x/-M, 0,..., 0), M =  1 ..... N (23) 
M N - - M  

where 2 = ~(1/M). These equilibria are denoted as M-fold symmetric. Note 
that any permutation of the N coordinates of an M-fold equilibrium is also 
an M-fold equilibrium. Solving for those critical points that correspond to 
local minima of V on S leads to the following stability theorem, ul) 

T h e o r e m  3 .1 .  An M-fold nondegenerate equilibrium Ye is stable (a 
local minimum of V on S) if and only if the common value 2 -- ~(a~) > 0 for 
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all coordinates a i ~ 0 and either the derivative ~'(a~) < 0 for all of the non- 
zero coordinates or ~'(a~)~ 0 for exactly one nonzero coordinate and 

M 

[r 1>0  (24) 
t = l  

(by convention 1/0= +oo). 

The set of points of S that approach unstable equilibria comprise a set 
of measure zero. Finding the set of physically relevant eventual matura- 
tional states of the system of N interacting follicles satisfying (10)-(12) is 
therefore equivalent to applying Theorem 3.1 to locate the stable equilibria 
of (16) and interpreting these stable equilibria in terms of the original 
coordinate system. In the next section we will demonstrate this procedure 
for a simple example. 

4. A N  E X A M P L E  

Consider a system of N interacting follicles that obey (10)-(11) where 
the follicle interaction function takes the form 

f ( x ,  X) = xO(x, X) = x { K -  D ( X -  M 1 x ) ( X -  M2x)} (25) 

1 1 
M---~ + ~ < 1 (25a) 

The parameters K [ t ime- i ] ,  D [concentration 2 time 1], M~, and Mz 
are positive, real valued, and are the same for all N interacting follicles. 
Although K and D can be scaled to 1 by choosing appropriate units for 
concentration and time, MI and M2 are dimensionless. The quadratic poly- 
nomial for the relative growth rate function ~b in (25) is believed to be the 
simplest and lowest-degree polynomial that can regulate ovulation number 
within a finite adjustable interval of integers. It has the following 
physiological features: 

1. When the circulating estradiol concentration J( is sufficiently small 
(this also implies that follicle maturity x will be sufficiently small), 
follicles will grow independently and exponentially with rate 
constant K. 

2. For any fixed value of X, there exists an interval of follicle 
maturities where the growth rate f is positive. Outside this 
"window" of growth, follicles undergo atresia (negative growth). 

3. As X increases (FSH decreases), this window of growth moves 
toward higher maturities, and the minimum follicle maturity 
required to escape atresia increases. 
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Although experimental techniques have not yet been developed to deter- 
mine explicitly the form of f in any mammal, the physiological features 
described above are consistent with experimental observations. (~4 16) These 
physiological properties were not explicitly used, however, to construct the 
follicle interaction function (25). They are consequences of the construction 
method described below. 

The function (25) can be written in the form of (12) where 

6(X) = X 2, (26) 

p(X) = ~ -  D (27) 
A -  

r = Dp(M~ + M2 - M] M2 p), 
x 

(28)  
X 

The function ~ is a parabola with roots at 0 and p * =  2/M u (Fig. 1). The 
maximum occurs at p * * =  1/M~I, where the value M H is the harmonic 
mean of M1 and M2, 

1 -2 + (29) 
MH 

Theorem 3.1 says that a symmetric M-fold equilibrium will be stable if 
~(1/M) > 0 and ~ ' ( I /M)<  0. Figure 1 shows that this occurs for all values 

---,W--- / 

= 

I~ l  LI I p* ~p 
E L  P "JL H 

2 

Fig. 1. An example of a graph of ~ vs. p from an f that satisfies (25)-(25a) and regulates 
ovulation number at 2. The only stable equilibria are the 2-fold symmetric, because M =  2 is 
the only integer value that satisfies ~(1/M)> 0 and ~'(1/M)< 0. All nonsymmetric equilibria 
are unstable since p * * <  1/2 and therefore Yu < YL for all possible values of ~(p). 

822/'63/5-6-22 
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of 1/M that lie in the interval (p**, p*). Therefore stable M-fold symmetric 
equilibria occur for those values of M that satisfy 

�89 < M < MH (30) 

The graphical method described above can be generalized and applied to 
any C 1 function r on [0, 1] with ~(0)=0. Stable M-fold symmetric equi- 
libria will occur for those values of 1/M that lie in intervals where both the 
graph ~ lies above the x axis and where r has a negative slope. 

When the graph of r is concave down and has a single maximum in 
the interior of [0, 1], then a graphical method can also be used to deter- 
mine the stability of nonsymmetric equilibria. Consider a line parallel to 
the x axis that intersects the graph of r at two points (Fig. 1). Let 
(L, ~(L)) be the left intersection and (H, r be the right. According to 
Theorem 3.1, any stable, nonsymmetric M-fold equilibrium must have 
coordinates 

M 1 

Ye = (-,/L, x/-H, .--, ~flH, 0,..., 0) (31) 
M N - - M  

or permutations of these coordinates. In addition, since Ye must be on S 
and satisfy (24), there are two additional constraints. These are 

L+H(M-  1)= 1 (32) 

and 

1 M - 1  
+  -7 -fff > 0 (33t 

Using (32) to eliminate M -  1 from (33) yields 

(1 - L)  ~ ' (L)  < -Hr (33a) 

This result has a geometric interpretation (Fig. 1). The tangent line at 
(H, ~(H)) intersects the y axis at Y~ = -H~'(H)+ 2 and the tangent line 
at (L, ~(L)) intersects the vertical line p =  1 at YL=(1 --L) ~ ' (L)+2,  
where 2 =  ~(L)=~(H).  Therefore, (31) will be unstable if Y~< YL" The 
symmetry of parabolic functions defined by (28) requires that the two 
tangent lines intersect with equal and opposite slope at p * * =  1/MH and 
therefore stable nonsymmetric equilibria will not exist if p * * <  1/2, i.e., 
MH > 2. This is ensured by (25a). Therefore, for the class of follicle inter- 
action functions represented by (25)-(25a), every initial state on the unit 
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sphere, except for a set of measure zero, flows asymptotically to an M-fold 
symmetric equilibrium with M an integer in the interval (MH/2, MH). This 
class of follicle interaction functions therefore carves the sphere into a finite 
number of open set regions (valleys of V), where each region RM is 
assigned an integer in the interval (MH/2, M~I) corresponding to the stable 
M-fold symmetric equilibrium that all points in the region approach as 
r ~ oo. The boundaries of these regions are comprised of the unstable 
equilibria and the set of points that flow into them. 

To interpret these results physically, it is necessary to return to 
the original coordinate system. The circulating estradiol concentration 
expressed as a function of r satisfies 

where .Y(r) = X(t(r)). Consider the set of initial points RM on S that flow 
into the M-fold stable symmetric equilibrium. For these points 

y~(y~)--'2(Ye)=~ as r ~ o o  (35) 
i = 1  

and therefore after a sufficiently long time 

(36) 

For the follicle interaction function (25), p is the decreasing function (27) 
with i n f p = - D .  We now consider two possible cases, depending on 
whether ~(1/M)<D or ~(1/M)>D for M ~  1 (sM~, MH). These cases repre- 
sent idealizations of two types of reproductive strategies that are observed 
in higher mammals--induced and spontaneous ovulators. 

For  induced ovulators (rabbits are an example), the process regulating 
follicle maturation is distinct from the mechanism that actually triggers 
ovulation, that is, the release of eggs from mature follicles into the oviducts 
(fallopian tubes). A number of follicles in a well-controlled range reach 
ovulatory maturity at a time when the circulating estradiol concentration 
has reached a relatively steady level. This level is sufficiently high to make 
the female responsive to male advances, but insufficient by itself to spon- 
taneously cause ovulation. The separate event of intercourse must occur to 
induce ovulation of the mature follicles. Nerve endings in the vagina are 
activated by the mechanical stimulation of intercourse and produce a surge 
of gonadotropin from the pituitary-hypothalamus. This surge and the 
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subsequent ovulation event occur on a time scale that is usually short in 
comparison to the follicle maturation process. 

In the case of the spontaneous ovulator (humans are an example), the 
estradiol concentrations never reach steady levels, but continue to rise 
at increasing rates until a concentration and/or rate is attained that 
spontaneously triggers the gonadotropic surge and ovulation of a 
well-controlled number of mature follicles. This happens if intercourse has 
occurred or not. As in the case of the induced ovulator, the gonadotropic 
surge mechanism and subsequent ovulation event occur on a relatively 
short time scale compared to the mechanism that regulates follicle matura- 
tion. In both spontaneous and induced ovulators, the hypothalamic loca- 
tion of the gonadotropic surge mechanism is believed to be anatomically 
distinct from the estradiol-gonadotropin feedback mechanism regulating 
follicle maturation. It is this latter maturation process and not the 
gonadotropic surge mechanism that is being modeled here. 

Case 1. Induced 0vu la to r :  ~ j ( I / M )  < D  for  Me (�89 MR) 

For each M, there is a unique root .~= Xo~(M) of p(.~) + ~(1/M). This 
root is a stable equilibrium of (36) and therefore also of (34). Thus, 
l i m ~  oo-~= X~(M) for all initial states, YoE RM. Using (14), we have 

dt 1 1 
--=dr cS(.,Y) "~c5(X~) > 0  (37) 

This means that l im,~ ~ t =  oo and therefore lim,~oo X =  X~(M). From 
the definition (15) of y~, the estradiol concentration that the ith follicle 
supports at time t is 

xi(t)=y~(r(t))X(t), i=l,...,N (3s) 

For each point in aM, M coordinates will satisfy yi --, 1/x/M as v --, ~ and 
the remaining N -  M coordinates will satisfy yi --* 0 as ~ --, oo. Therefore, 

{ x ~  Xoo(M) 1 , then lira x, 
if l i r a  y i =  , ~  M (39) 

O, then lim x i=O 

That is, M follicles will emerge from the follicle population with the same 
equilibrium maturity, while the remainder will undergo atresia. The ovula- 
tion number M will depend on the initial state of the system; however, it 
will always be an integer in the interval (MH/2, MH) independent of the 
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size N of the system. Of course, intercourse or some other mechanism will 
eventually cause follicle turnover from the equilibrium pool of mature 
follicles before ~--> oo. 

Case 2. S p o n t a n e o u s  Ovulator :  t ~ ( 1 / M ) > D  for  M~ (~MH, MR) 

Since p(J( )>  - D  for all J?, after sufficiently large ~, 

d2 
- -  > K X  ( 4 0 )  
dr 

where K =  ~(1 /M)- -D > 0. This implies 

lira X~= oo (41) 

What happens to the time t as ~ --* oo? Using (14) to solve for t(r) yields 

dr 1 dr 
t(-c) =- (42) 

J0 

For '~>T1, where r~ is a sufficiently large number, we can use (40) to 
obtain 

limo~ t(r) < 6(J7) + 2 J>z(~,)X ~_J() (43) 

The right-hand side of (43) will be bounded as ~ - ,  oo if 6(X) grows faster 
than X ~ as X--* o% where e > 0. This condition is satisfied for the follicle 
interaction function (25), which has a 3 given by (26). Therefore, 

lim t =  T(Yo) (44) 
r ~ o o  

where T is a finite time that depends on the initial state Y o e R M .  
Combining (41) and (44), we have l i m ~  r(y0~ X(t; Yo)= oo. Applying this 

result to (38) shows that if lime ~ ~ yi = 1/x/-M , then for the follicles that 
correspond to these coordinates l im,~ T Xi = o0. 

When expressed as a function of z, follicle maturity satisfies 

dx i  - 2 
= "~i [ -p(X) + ~(Y i  )] (45)  

where 2 i (v )=x , ( t ( r ) ) .  If y i - - '0  as r--+ oo, then r  Thus, for the 
follicles that correspond to these coordinates, we have 

dr ~ - D f i  (46) 
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since p()() ~ - D  for sufficiently large r. Therefore, for these follicles xi -~ 0 
as t--, T. In summary, for every initial state of the N-follicle system that 
corresponds to a point I10 ~ R~t, M follicles will emerge with unbounded 
maturity in a finite time, while the remaining follicles will undergo atresia. 
The ratio of maturities of any two follicles that do not become atretic 
approaches unity as t--, T. Of course, neither follicle maturity nor the 
circulating estradiol concentration can physically grow without bound. 
Eventually X and/or dX/dt will become sufficiently large to signal the 
gonadotropic surge mechanism that signals ovulation. At this time M 
follicles will have been selected with ovulation maturities whose ratios 
approach unity. A finite "blowup" time T(Y0) is an idealization that allows 
the model to make predictions about ovulation time as well as ovulation 
number for the spontaneous ovulator. 

As in the case of the induced ovulator, the ovulation number M is 
limited to be within the range (MH/2, MH) and this interval is independent 
of N. This latter fact can account for the observation that the range of 
ovulation numbers for any given mammal is largely insensitive to the 
surgical removal of ovarian tissue or to the age of the mammal. 

5. S O M E  N U M E R I C A L  E X A M P L E S  

In this section we illustrate some of the theoretical results obtained in 
the previous section with numerical examples. We will also simulate the 
behavior of the system under physiological conditions that cannot be fully 
analyzed by the methods introduced in the previous section. 

Figure 2 shows the graphical results of four typical numerical solutions 
of the system (10)-(11) with f as in (25)-(25a). The initial maturity of each 
follicle is chosen independently from a uniform distribution and the 
parameters for M 1 and M2 are chosen so that only the integer value M = 2 
is in the stable interval (MH/2, MH). Since the value of D>~(1/2) ,  two 
follicles emerge from the population with the same equilibrium maturity, 
while the remainder atrophy. This example models an induced ovulator 
that regulates ovulation number at two independent of the number of inter- 
acting follicles or their initial maturities. The equilibrium (ovulatory) 
maturity is also independent of the size of the follicle population and its 
initial state. Note that it is always the two initially largest follicles that 
emerge as ovulatory. In fact, it can be proven that the initial order of 
follicle maturities must be maintained. However, if we allow the parameters 
of f to vary somewhat among follicles, then crossovers in follicle maturity 
can occur. This is shown in Fig. 3, where the growth function parameters 
for each follicle are chosen independently from a uniform distribution. In 
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Fig. 2. The graphs of four numerical solutions for the system (10)-(11) with f as in 
(25)-(25a). The parameters of f are M 1 - 2 . 2 ,  M 2 = 4.2, D = 1.0, K =  1.0. MH, the harmonic 
mean of M 1 and M2, is 2.88, and therefore the stable interval (MH/2 , MH) contains only one 
integer, M = 2. The number of follicles in each graph is N = 10. Initial follicle maturities are 
chosen independently from a uniform distribution in the interval [0 ,0 .1] .  Two follicles 
approach the same equilibrium maturity independent of the initial conditions, while the 
remainder atrophy. This models an induced ovulator that regulates ovulation number at 2. 
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Fig. 3. The graph of a numerical solution to the system (5)-(6)  showing follicle maturation 
curves that cross each other�9 The number of interacting follicles is N =  10. Each follicle 
satisfies a growth function (gi(x, X))  of the form (25), but the values of the parameters o f f  
for each follicle are chosen independently from uniform distributions. The intervals for these 
distributions are: 2.2 < M 1 < 2.42, 4.2 < M 2 < 5.04, 1.03 < D < 2.06, 1.07 < K <  2.14. Initial 
follicle maturites are also chosen from a uniform distribution in the interval [0, 0.1 ]. 
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this case the numerical solutions pertain to a system of the more general 
form (5)-(6} rather ~han (10)-(11). 

Figure 4 illustrates two numerical solutions of (I0)~(11) with f as in 
(25)-(25a). In this case the parameters of f have been chosen so that there 
are several integers in the stable range (Mt~/2 = 3.02, MH = 6.04). Ovula- 
tion number now depends on the initial state of the system, but will always 
be 4, 5, or 6 independent of size of the interacting follicle population. Since 
D<~(1/M) for M = 4 ,  5, 6, this example corresponds to the spontaneous 

(a} 

gA~'URHg 

20.0 

50  

r 6 

(B) 

I . . . .  t "' 

&# 2,0 ~.0 6.0 

Fig. 4. The graphs of two numerical solutions of the system (10)-{11 ) with f as in (25), 
Ml =3.95, Mz=12.9, D=0.004, K=4.0. Since Mt:~6.048, the stable range of integers is 
[4, 6]. This example corresponds to a spontaneous ovulator because ~(l/4}, ~(1/5), ~(1/6) are 
all larger than D. (A) Four folficles ovulate, (B) the ovulation number is 5. 
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ovu la to r  of  Section 5 (Case 2) in which bo th  ovula t ion  number  and ovula-  
t ion t ime are pred ic ted  by the model.  The ovula t ion  ( "b lowup")  time 
depends  on the ini t ial  condi t ions .  

I t  is na tu ra l  to consider  the behav ior  of this h o r m o n a l  feedback system 
when N, the number  of in teract ing follicles, is not  fixed, but  changes in 
t ime as new follicles ini t iate  g rowth  from a d o r m a n t  immatu re  pool .  This 
mot iva tes  a mode l  of the fol lowing form: 

{ti: i =  1, 2,...} 

0 t < t i 
X i  = X ~  t = t i 

i =  1, 2,... (47) 

dxi 
- g ,  (x~, X ) ,  t >1 ti 

dt 

X( t )  = ~ x i ( t )  
i 

where ti denotes  the ac t iva t ion  t ime of the i th  follicle. When  t < ti the i th  
follicle is d o r m a n t  (xi = 0). At  t = ti it is ac t iva ted  with init ial  ma tu r i ty  x*  
and for all t imes thereafter  it satisfies the differential  equa t ion  in (47) with 
the coupl ing  g lobal  feedback var iable  X(t)  defined again as the to ta l  
es t radiol  concen t ra t ion  in the c i rcula t ion at  t ime t. F igure  5 d isplays  a 
numer ica l  so lu t ion  of (47) when the ac t iva t ion  t imes are chosen inde- 

0.6 

Maturity 

03  

I I I 
1.0 2,0 3.0 

Time 

Fig. 5. Numerical solutions to the system (47) with random follicle entry. Activation times 
are chosen from a Poisson process with mean activation rate p = 8. Parameter values for the 
growth function of each follicle are selected from uniform distributions on the following inter- 
vals: 3.6 < M t < 3.96, 22.32 < M 2 < 24.55, 1.03 < D < 1.133, 1.07 < K< 1.284. x* is selected 
from a uniform distribution in the interval [0.3, 0.039]. Here X ~ = 20. 
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pendently from a Poisson process. The follicle growth functions are of the 
form (25), 

gi(x, X) = x{K,- Di(X- MIlX)(X- M2ix) } (48) 

with parameter values that are selected independently from a uniform 
distribution. The x,* are also independently given values from a uniform 
distribution. The system self-organizes in time and "cycles" of maturation 
develop in which the ovulation number and time are well controlled. When 
the estradiol concentration reaches a critical value X =  X t the follicles that 
have emerged as ovulatory are removed from the interacting population. 
This corresponds to the actual event of ovulation that is stimulated by 
estradiol through its activation of the gonadotropin surge mechanism (see 
Section 4). Histograms of the results of 1000 cycles are shown in Figs. 6 
and 7. Using the theoretical results of Section 4 and the mean values of the 
parameters, it is possible to predict the correct ovulation numbers 
illustrated in Fig. 6; however, the analysis is significantly complicated by 
the presence of follicle entry at random times. New phenomena arise in this 
setting, including the existence of new equilibria and changes in stability of 
the symmetric equilibria. (17) The unimodal character of the ovulation time 
distribution and the fact that it is skewed right are typical of the distribu- 
tion of ovulation times observed in spontaneous ovulators such as humans 
(Fig. 7). 

The effects of removing an ovary in the middle of a cycle are simulated 
in Fig. 8. Follicles are randomly assigned left or right. At the time indicated 
by the arrow in Fig. 8, all follicles assigned to the right ovary are 

Count  
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0 -----] 
1 2 3 4 5 6 7 

Ovulat ion N u m b e r  

8 9 10 

Fig. 6. A histogram of the ovulation numbers obtained in 1000 cycles with parameters as 
described in Fig. 5. Statistics: Mean = 4.747, standard deviation = 0.562. 
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Fig. 7. (A) Histogram of the ovulation time T defined by X ( T ) - X  + for the 1000 cycles 
described in Figs. 5 and 6. Mean = 1.796, SD =0.253. (B) Histogram of a subset of the 1000 
cycles that correspond to those times in which the ovulation number = 5, m e a n =  1.783, 
SD = 0.244. (C) Histogram of a subset of the 1000 cycles that correspond to those times in 
which the ovulation number = 4, mean = 1.853, SD = 0.262. 



1152 kacker and Percus 

10 

0 1" ' ' 
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Fig. 8. Simulation of ovary removal in the middle of a cycle. The system satisfies (47) wath 
g~ satisfying f as in (25) with parameter values M 1 = 3.85, M 2 = 15.15, D = 0.0025, K= 1.0. 
Follicles are activated by a Poisson process with mean rate # = 12. Here x* = 2 and X t = 20. 
Half of the follicles chosen at random are removed at t = 1 (arrow). Ovulation number is 
conserved at 4. 

eliminated from (47). In  this case two of the largest follicles are removed. 
Nevertheless, the system automatical ly compensates for their elimination 
and ovulates the same number  as if two ovaries were present (Lipschtitz's 
law of follicular constancy (see Introduct ion) .  (1'2~ 

Although the stable range of ovulation numbers  is unaffected by the 
size of the interacting follicle populat ion,  there are subtle changes in the 
probabili ty of observing a given ovulat ion number  with N. This is 
illustrated in the histograms of Fig. 9. It  is biological fact that  the number  
of follicles interacting in each cycle slowly decreases with age as the size of 
the reserve follicle pool  declines. In most  mammals  death ensues before the 
reserve pool of immature  follicles is greatly exhausted; however, in humans  
complete or nearly complete exhaustion is the rule and marks the initiation 
of the menopausal  period. In the human  populat ion the observed frequency 
of dizygotic twins (double ovulations) increases steadily with age until 
menopause  is reached. (The monozygot ic  twin rate is unaffected by age.) 
An increase in the frequency of double ovulations in the human  popula t ion 
with decreasing N is consistent with the results of the simulation in Fig. 9. 
As N decreases, the probabili ty of observing a larger ovulation number  in 
the allowable range increases, that  is, the ovulat ion-number  histograms 
shift to the right with decreasing N. There is a loss in the regulation of 
ovulation time as N decreases which is also consistent with observed 
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results: the dispersion of ovulation times increases as menopause is 
approached. 

These results suggest an important physiological role for the large 
number of follicles that undergo atresia in all mammals. Most forms of 
plant and animal life have reproductive systems that are designed to release 
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Fig. 9. The effect of the number  of interacting follicles, N, on the regulation of ovulation 
number  and time. Top: N =  1000, ovulation number=7.79_+0.65 (mean •  ovulation 
t ime=4 .37+0 .01 .  Middle: N = 1 0 0 ,  ovulation number=8.28_+0.67,  ovulation t ime=  
5.55 _+ 0.04. Bottom: N -  30, ovulation number  = 9.04 _+ 0.65, ovulation time = 6.33 _+ 0,1. Each 
graph is the result of 80 numerical solutions of the initial value problem (10)-(11) with f as 
in (25) (25a). M l = 6.1, M 2 = 5000.0, D = 1.0, K =  1.0. Initial maturites are chosen independ- 
ently from a uniform distribution in the interval [0, 10-sJ .  
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large numbers of eggs (105-107 ) into the external environment at times that 
are propitious for subsequent fertilization and development. This reproduc- 
tive strategy has been altered in the warm-blooded vertebrates (mammals 
and birds), where only a few (10~ eggs are released and develop 
within the spatially confined but well-regulated environment of the nest or 
uterus. The model suggests that in warm-blooded vertebrates, the older 
evolutionary scheme that activates a large number of follicles has not been 
discarded. Instead, this scheme has been adapted by a superimposed 
hormonal feedback mechanism to the (opposite) purpose of keeping the 
ovulation number down. It is not unusual in biology for older control 
mechanisms to be adapted rather than discarded as new control systems 
develop in response to changing environmental demands. In this case, it 
can be argued that the activation of a large number of follicles also helps 
the hormonal feedback system to better control the timing of ovulation. It 
appears that the distribution of ovulation times approaches a delta func- 
tion as N ~ ~ .  This is also an interesting mathematical result because the 
distribution of ovulation numbers does not collapse on a single ovulation 
number as N ~ 0% but seems to approach a definite limiting form. Since 
each ovulation number has its own distribution of ovulation times (Fig. 7), 
it would not have been surprising, for example, if instead of a single peak, 
the distribution of ovulation times had  several peaks--one for each ovula- 
tion number. 

6. E X P E R I M E N T A L  S U P P O R T  FOR THE A S S U M P T I O N  OF 
N O N S P A T I A L  FOLLICLE I N T E R A C T I O N  

For nearly a century there has accumulated a great deal of biological 
evidence to support the assumption that hormonal feedback plays a signifi- 
cant role in the regulation of follicle growth. We have shown here that this 
interaction can account for the regulation of ovulation number and several 
other biological features associated with it. What is the evidence, however, 
that spatially dependent interactions are not also significant in regulating 
follicle growth and ovulation number? It has been observed in several mul- 
tiple ovulating mammalian species that the number of eggs released at the 
time of ovulation is distributed binomially between the left and right 
ovaries. (1s-23~ More precisely, if M is the total number of eggs released at 
the time of ovulation and if Po is the probability that an egg is shed from 
the right (left) side, then the probability that k = 0, 1,..., M follicles reach 
ovulation maturity on the right (left) side satisfies 

M~ 
P(k) p~(1 - po) M-k (49) 

k! ( M -  K)! 
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In those species studied P0 is close to 1/2. The binomial result is, of course, 
consistent with a spatially independent feedback mechanism, but it is not, 
in general, consistent with a significant role for spatially dependent 
follicle-follicle interaction. Suppose that in addition to hormonal feedback, 
follicles secret chemicals in proportion to their size and suppose that these 
chemicals stimulate (inhibit) the growth of neighboring follicles. Under 
these conditions the more extreme (central) values of k would be favored 
over expected binomial probabilities. These deviations have not been 
detected. 

This method is rather indirect, however, and it cannot be easily 
employed on primates, which are predominantly single ovulators. There- 
fore, in order to provide a further basis of support for the biological 
assumption that nonspatial interactions play the only significant role in 
follicle growth, we have developed a stochastic model that describes 
various aspects of the follicular distribution in the presence of only these 
global growth factors. Our method will be of particular interest in chemical 
physics because of the nature of the model: we have a polydisperse system 
of soft spheres which, since there are no local hormonal interactions, can 
be described by a simple physical potential. The probability of finding the 
system at a given total potential ~b = ~b o is described by the Boltzmann 
factor, where the system is taken to have some certain biological tem- 
perature/?. 

We base our model on four principal assumptions: 

1. The only forces acting on the system are conservative forces due 
to geometric considerations--the direct contact interactions between 
bodies--and nonconservative forces due to global growth factors--those 
which affect only the system as a whole and do not disturb spatial equi- 
librium. We may therefore describe the state of the system by a physical 
potential due to the contact forces; the distribution of this potential is given 
by the Boltzmann factor. 

2. The follicles are elastic sacs filled with an incompressible fluid, and 
therefore act as soft spheres. These spheres are distorted by contact with 
one another and with the ovary wall. They are also distorted by the rigid 
connective tissue in the interstitium; this tissue is oriented principally in 
one direction only, (24) so the interstitium distorts the follicles uniformly 
along one principal axis. 

3. A given follicle pair has interaction potential 

~,:=~ (50) 
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where r o is the separation of the two bodies' centers, p is a parameter of 
the model, and V~j is the bodies' "overlapping volume"--the volume that 
they would share were they to remain as spheres and not be distorted. (A 
slightly more complicated function determines the potential for interactions 
between follicles and the ovary wall.) Note that ~b~= 0 in all cases where 
the two bodies are not distorted at all. Our particular choice of q~ij is purely 
an empirical function that comes from our observations of the follicular 
distribution and distortions in a sample ovary, and could be improved by 
a more careful study of the dynamics of fluid-filled sacs. 

It is further assumed here that 3-body interactions are not significant 
and that the total potential ~b for the system is simply 

pairs ij i 

(the Wi term signifying the contribution from wall interactions). 

4. The number of developing follicles N in the ovary is large. This 
operational assumption enables us to solve the model numerically by 
Monte Carlo simulation. 

We formalize the assumptions as follows. From assumption 1, we 
know that the system has a potential ~b, distributed in the 3N-dimensional 
space of the follicle positions according to the Boltzmann distribution: 

P(~(FI,'", FN))dF1'"" d r N  = exp[-- /~(F1 ..... /~N)] dr1 """ dFN (52) 

where the i i are the locations of follicle centers. The biological temperature 
/~, like p, is a parameter of the model. This temperature represents the 
"stiffness" of the follicles: /3=0 implies infinitely soft spheres, whereas 
/3 = Go implies completely hard spheres. 

From assumption 2, we know that the interstitial tissue imposes 
a unidirectional distortion; to compensate for this, we apply a certain 
rescaling factor q in the direction of distortion (r/ and the direction are 
determined empirically). The locations ?i therefore refer to the follicle 
positions after the system has undergone such a rescaling transformation. 

Now, from assumption 3, we know that 

:= 2 :o+Zw, 
pairs ij i 

= y ~  v,j 
pairs 0 r~'~ "'~- ~/ W i  (53) 
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where Wi, again, is calculated by a somewhat complicated algorithm 
involving the ovary wall. To be precise, this algorithm considers the "reflec- 
tion" i' of follicle i about the plane of the wall which cuts through the 
follicle; then, Wi-fbii,, where ~bei, uses the overlapping volume Vii, and 
separation rii, between the follicle and its "reflection." 

Finally, from assumption 4, we can use a Monte Carlo simulation to 
solve for quantities predicted by the model. Specifically, we use a modifica- 
tion of the Metropolis algorithm: because of the high packing density of 
follicles in the ovary, we introduce fluctuations into the system not only 
through small displacements of follicles, but also through long-range 
follicle pair exchange. 

The model is effected, then, by the following method: the follicles of an 
observed Rhesus monkey ovary are mixed up according to q~ and P(~b), and 
the results are compared with the original observation. In particular, we 
are interested in comparing the distribution of "larger" and "smaller" 
follicles between the observed and simulated ovaries, since this is a direct 
indication of the significance of any local, spatially-dependent forces that 
may affect follicle growth. If, for instance, there are chemicals secreted by 
follicles in proportion to follicle size which promote growth at short range 
only, we might expect to find in the observed ovary a clustering of large 
follicles that the model would not predict. 

We look, specifically, at the probability that a follicle found at a given 
distance from a typical "large" follicle will itself be "large." We express this 
explicitly as 

n(r) 
q(r) =- (54) 

n(r)+m(r)  

n(r) is defined as the number of pairs i, j with separation du = r, where Re, 
R~ > ~ and m(r) is defined as the number of pairs i, j with separation d~ = r, 
where Re < e < Rj or Rj < c~ < Rr Here, Re and Rj are the radii of follicles 
i and j (the radii when the follicles, taken as soft spheres, are undistored), 
and ~ is the threshold value which divides "large" from "small" follicles. (It 
is, of course, difficult to define this threshold value precisely, but it should 
be placed somewhere near the middle of the distribution of follicle sizes, 
with the many very immature follicles below it and the few nearly mature 
follicles above it. In our case, we had roughly 75 % of the follicles smaller 
than the threshold and 25 % larger than the threshold, but in fact the exact 
place of the division did not seem to have any great effect on the final 
results.) n(r) and m(r) are pair correlation functions related to the more 
standard correlation function nz.~,(r ). Specifically, n(r) is the number of 
large-large pairs at separation r, and m(r) is twice the number [due to 

822/63/5-6-23 
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double counting necessary for the quantity q(r)] of large-small pairs at 
separation r. Then q(r) is an average proportion of large follicles at 
distance r from a typical large follicle�9 

In fact, though, we do not measure separation continuously with r, 
but rather in discrete "shells" k, since the follicle sizes are large on the scale 
of the entire system (there are about 300 tightly packed developing follicles 
in one ovary--see the cross section in Fig. 10). Instead of (54), we are 
really interested in 

n k  
q k -  = - -  ( 5 5 )  

nk + mk 

nk is now the number of large-large pairs whose separation lies in the kth 
shell, and similarly with mk. It is not necessary that these shells k be placed 
at regular intervals of r, but only that each one contain a statistically 
significant number of follicle pairs, and that there be enough shells to allow 
good resolution. 

The results of the model are currently in the preliminary stages, 
but although we are still searching for suitable values of the model's 
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Fig. 10. Digitized image of a 7-#m-thick ovarian cross section from a Rhesus monkey on day 
4 of the menstrual cycle. This is believed to be the time when the follicle selection process is 
occurring in this species. 
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Fig. 11. q~' vs. k for an actual ovary whose typical cross section is shown in Fig. 10 and for 
the stochastic model with parameters fl = 2.65 and p = 2. Here fl has units of 1/distance, where 
distance is measured in digital units of 17 #m each. 

pa rame te r s ,  it is ins t ruc t ive  to n o t e  some  of wha t  we have seen so far. 

F igu re  11 shows the stat ist ics for the or ig ina l  follicle d i s t r i b u t i o n  a n d  the 
s imu la t ed  follicle d i s t r i b u t i o n  for fl = 2.65 a n d  p = 2. As a no i se - r educ ing  

a lgo r i t hm,  we average  successive po in t s  in  qk vs. k twice; q~ on  the o r d i n a t e  
axis is def ined as 

qk + 2qk + 1 + qk + 2 
q~ = 4 (56) 

The  d i s t ance  be tween  k a n d  k + 1 is typical ly  be tween  15 a n d  35 #m,  except  
for the  first few shells, which,  in  o rder  to c o n t a i n  a sufficient n u m b e r  of 

follicle pairs,  are  cons ide rab ly  la rger  (see Tab l e  I). By c o m p a r i s o n ,  a typical  
d i a m e t e r  of the ovary ,  after the co o rd i n a t e s  have been  rescaled to c o m p e n -  
sate for in ters t i t ia l  d i s to r t ion ,  is 5 ram. 

Bo th  the s imu la t ed  a n d  obse rved  g raphs  of Fig. 11 show an  increase  in 

Table I 

Shell Radial interval 

k = l  0 < r  < 320/~ 
k = 2 320# < r < 420# 
k = 65 1.952 mm < r < 1.968 mm 



1160 Lacker and Percus 

q~ at short range (until k = 8, or r ~ 700 #m, which happens to be close to 
the radius of the largest follicle in the ovary), due to the geometrical con- 
straints of interactions through the potential ~b. The (q~)ob ..... a, however, is 
consistently higher than (q~)simulatea, SO under these parameters the model 
cannot quite account for an unexpectedly high proportion of large follicles 
near other large follicles. The discrepancy is not great--clustering does not 
occur to any substantial extent--and we believe that tests under different 
ranges of parameters will provide better agreement with the observed 
results. Careful attention is necessary, however, since this region should be 
very sensitive to the effects of possible spatially-dependent hormonal inter- 
actions. 

At longer range, furthermore, we see in the observed data what 
appears to be a periodic packing effect that the model does not clearly 
predict. This packing effect in a complicated three-dimensional volume 
such as the mammalian ovary is not well understood, and, while it is at 
sufficiently long range that it should not be directly relevant to spatially- 
dependent hormonal interactions, the effect must be investigated more 
carefully. Tests under new sets of parameters will be informative in this 
sense as well. 
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