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ABSTRACT
We consider the problem of all-to-one (reverse multicast)
selfish routing in the absence of a payment scheme in wire-
less networks, where a natural model for cost is the power
required to forward. Whereas each node requires a path
to the destination, it does not care how long that path
is, so long as its own individual or local forwarding cost
is minimized. Thus, we refer to this setting as a Locally
Minimum Cost Forwarding Game (LMCF). From a system-
wide perspective, short paths are clearly desirable, yielding
two related social objectives of finding topologies that min-
imize: (i) the maximum stretch factor, and (ii) the directed
weighted diameter. We prove that Nash equilibria always
exist for LMCF, in particular the directed MST always be-
ing one, and we analyze the ratio of the social cost of Nash
equilibria to the global optimum. The worst (maximum)
possible value of this ratio is called the price of anarchy
(PoA), and the best (minimum) possible value is called the
price of stability (PoS). For the maximum stretch factor we
present a Ω(n) worst-case bound on PoA and PoS, and for
the directed weighted diameter we present a ω(nc) worst-
case bound on PoA and PoS for all c < 1, even when re-
stricted to Euclidean instances. We prove hardness of com-
puting the optimal Nash equilibrium in three-dimensional
Euclidean instances as well as approximation hardness in ar-
bitrary instances. Finally, we propose a heuristic for finding
Nash equilibria and analyze, via simulations and probabilis-
tic arguments, the social costs given by the heuristic and by
the MST. These results suggest that for random Euclidean
power instances, the expected PoA is ω(1) while the expected
PoS is Θ(1).

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
Topology; G.m [Mathematics of Computing]: Miscel-
laneous
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1. INTRODUCTION
Incentive-compatible topology control protocols play a cen-

tral role in selfish wireless networking. These protocols de-
termine which links are to be used for forwarding data pack-
ets from sources to destinations. Non-selfish topology con-
trol involves selecting a subset of possible communication
edges such that the resulting induced subgraph satisfies a
number of desirable properties, such as being a single com-
ponent, having small maximum degree, and preserving short-
est paths within a small factor (see [13, 16] for an overview
of topology control results). Incentive-compatible topology
control has only recently received attention from the re-
search community, with the two traditional game-theoretic
approaches being to characterize Nash equilibria [6, 5, 12]
and to design VCG-based mechanisms for ad-hoc networks
[14, 9, 6, 5, 1, 2].

We study selfish topology control where all participating
nodes need to have a path to a single destination. This might
be the access point (AP) that allows the nodes to connect
to the Internet, or a base station in a hybrid cell phone
network, or a central processing node in a sensor network.
Our cost and utility model is as follows.

Individual nodes care only about minimizing their own
power consumption, and adopt their strategies accordingly,
whereas the global objective is to minimize the total energy
used. The social goal is to minimize the expected amount
of power consumed by transmitting a single message from
source to destination. Assuming fixed routing tables (pure
strategy) this will also be the cost-per-message in the long
term. The goal of individual agents is to minimize their
power consumed given that they must forward what has
been given them in this reverse multi-cast scenario. The
”social” goal is to minimize the total power consumed. We
assume that messages are generated at random sources. For
simplicity we will assume uniformly at random, but all our
results will hold for any probability distribution which guar-
antees that each node has a non-zero probability of being a
message source. Specifically, define:

• qv = load generated at node v
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• Qv = total outgoing load at v from all data passing
through v

• cv = cost per-bit of forwarding from v to v’s chosen
neighbor

• PATHv = sum of ci along the path from v to the des-
tination

Player v wants to minimize Qvcv, but has no control over
Qv and can only minimize cv. The global objective is to
minimize the total induced load times the forwarding cost,
P

v Qvcv =
P

v qvPATHv. Given an aggregate load
P

v qv,
the worst-case distribution would be concentrated along the
costliest path, with exactly one nonzero qv. The global ob-
jective is therefore to keep that longest directed path short.

Since a node’s interest is limited to having a path to the
destination, and it does not care how long that path is, so
long as its individual or local forwarding cost is minimized,
we refer to this setting as a Locally Minimum Cost Forward-
ing Game (LMCF). Of course, from a system-wide perspec-
tive, short paths are desirable, as explained above so that
our social optimum objectives as the following: (i) minimize
the maximum stretch factor in the resulting topology with
respect to true shortest path distances, or (ii) minimize the
cost of the longest path in the resulting topology. Our aim is
to find and to characterize Nash equilibria that optimize the
social objective. The ratio of the objective value achieved
by the best Nash equilibrium and the (non-selfish) value of
the social optimum is called the price of stability, whereas
that ratio for the worst Nash equilibrium is called the price
of anarchy [11, 15, 3].

The prices of stability and anarchy have been extensively
investigated in other network settings under other objec-
tives, particularly for congestion-based games and fair-allocation
games (for example [3, 11, 15, 8]). The problem of finding
good Nash equilibria in the context of topology-control for
ad-hoc networks has also been investigated [14, 9, 1, 2, 6,
5]. We note that the LMCF game differs from previously
considered games in its objectives, both individual and so-
cial. Our work is related to the non-game-theoretic results
of [10] that construct spanning structures balancing edge
costs (MSTs) and path costs (SPTs). However the game-
theoretic aspect of this work, in particular the locality of
individual preferences, makes a crucial difference as the al-
gorithms of [10] do not directly relate to Nash equilibria for
LMCF.

We prove that Nash equilibria always exist for LMCF, and
that in fact a minimum spanning tree is always a Nash, al-
beit rarely a socially optimal one. We give examples showing
that both the prices of anarchy and stability can be linear
with respect to the stretch-based social cost objective and
ω(nc) for any c < 1 for the maximum-distance based cost
function. We show NP-hardness and inapproximability re-
sults for the problem of finding the socially optimal Nash
equilibrium. We observe that there is hope for positive av-
erage results in various random graph models, such as Eu-
clidean power cost functions which are a common model for
communication costs in ad-hoc networks (Sect. 3.2), in view
of previous work indicating that many nodes are involved in
mutual nearest neighbor pairs in the relevant random mod-
els [17, 18]. We propose a greedy heuristic that we test in

simulation, and find that the quality of the Nash equilib-
ria found appear independent of the instance size (this is
not true for a straight-forward MST heuristic). Our experi-
ments suggest a plausible ω(1) average price of anarchy and
Θ(1) average price of stability, and supports the use of our
heuristic as a topology-control protocol for selfish all-to-one
routing in ad-hoc networks.

2. MODEL AND PRELIMINARIES

Definition 2.1 (LMCF Game). Given a connected, undi-
rected, edge-weighted graph G = (V, E) (with V = (1, 2, . . . , n),
weight function w : E → R and designated destination
node t, LMCF (G, w, t) consists of the following: Players
are nodes v ∈ V \{t}, each player v with strategy set N(v) =
{ one-hop neighbors of v}. Given a pure strategy-tuple1 S =
(s1, s2,· · · , sn−1) refer to GS, the graph induced by S, as the
directed graph formed by the set of directed edges of the form
(u, su). Finally, the cost cS(v) of strategy-tuple S to player
v is cS(v) = w(v, sv) if GS contains a path from v to t and
∞ otherwise.

For any node v and any strategy-tuple S, at most one
path may exist from v to t in GS . Denote by distS(v) the
total weight of that path if such exists and ∞ otherwise.
Clearly, this distance is minimum in a shortest path tree
(SPT) rooted at t. Denote the shortest path distance simply
by dist(v). Now, we present two alternative formulations for
the Social Cost of a strategy-tuple S for the LMCF Game.
The first is based on the stretch factor of node-destination
paths in GS , the second based directly on the maximum
distance of any node to the destination in GS .

SCstretch(S) = maxv∈V \{t}
distS(v)

dist(v)
(1)

SCmd(S) = maxv∈V \{t}distS(v) (2)

We investigate the price of anarchy and price of stability,
as well as their computability, for Nash equilibria of the Lo-
cally Minimum Cost Forwarding (LMCF) Game. A Nash

equilibrium is a fixed-point best-response strategy profile:
a strategy-tuple from which no agent has a unilateral incen-
tive to deviate, i.e., any such deviation would not improve
the cost to the agent. The price of anarchy, PoA, with
respect to a social cost function on a given instance is the
maximum (worst) ratio of the social cost of a Nash equi-
librium to the best possible social cost (that for the SPT).
The price of stability, PoS, is the minimum (best) such
ratio. We study these quantities in both the worst-case and
average-case. Since by definition SCstretch(S) = 1 for the
SPT, PoA and PoS over SCstretch are precisely the maxi-
mum and minimum social cost over all Nash equilibria.

We will focus on the prices of anarchy and stability on Eu-
clidean power graphs and random link graphs. A Euclidean
p-power graph in dimension d is a complete graph consist-
ing of nodes embedded into d-dimensional Euclidean space
with edge weights defined by w(i, j) = dp(i, j), the pth power
of the distance.2 Random Euclidean power graphs are in-

1We restrict ourselves to pure strategies when discussing
strategies and later note why this restriction is w.l.o.g. for
the questions considered.
2When the dimension is not specified, we may assume it is
2. When the power is not specified then assume that it is
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duced by placing each node uniformly at random into the d-
dimensional unit-cube. These are especially relevant models
of ad-hoc networks due to the randomness of placement and
the modeling of energy. Random link graphs are unstruc-
tured, formed simply by assigning i.i.d. weights from some
distribution to the edges of the complete graph. Here, for
simplicity, we will take weights to be distributed uniformly
at random over some bounded interval.

3. RESULTS

3.1 Examples and Lower Bounds
We first present examples of Nash equilibria that provide

some intuition on the nature of the problem, as well as lower
bounds on PoA and PoS.

Example 3.1 (MST). Given a graph G and destina-
tion t, construct a minimum spanning tree T of G and direct
its edges towards t. Note that this forms a Nash equilibrium:
If a node u has an incentive to switch from its current for-
warding choice v to a new node v′, forming T ′, then doing
so does not introduce a cycle and w(u, v′) < w(u, v). But
then T ′ is also a spanning tree, with total cost less than that
of T , contradicting that T is a MST.

Now consider the MST for the Euclidean “Horseshoe”
graph GH of Figure 1 given in [10]. This example imme-
diately gives a Ω(n) lower bound on PoA with respect to
SCstretch, since both a clock-wise and a counter-clockwise
path to t are Nash equilibria. Further, it can inductively
be checked that the best Nash equilibria for this case with
respect to both SCstretch and SCmd is that of Figure 2,
thus also giving a Ω(n) lower bound on PoS for SCstretch.
We note the contrast with [10]’s approximate solution for
balancing MST cost and SPT cost which yields a constant
bound for GH (by actually connecting the dots as a horse-
hoe) but is not a Nash equilibrium. Thus, we have:

Example 3.2 (Horseshoe). The Euclidean “Horseshoe”
graph of Figure 1 given in [10] yields linear lower bounds on
both PoA and PoS under SCstretch, the optimal Nash being
the counter-intuitive one of Figure 2 (unlike [10]’s constant
stretch approximation for a non-game-theoretic scenario).

Now consider a Euclidean Spiral graph Gspiral with t at
center such as the nodes of Figure 3. One may imagine
forming this graph just as one draws the spiral from inside
out, where each new node gives an edge that was a little bit
longer than the one before as well as a little bit shorter than
the new node’s distance to the closest neighbor in an inner
layer of the spiral. It can be checked that the unique Nash
in such a class of instances is that of directing the Spiral
inward towards t as shown in the Figure. Moreover, precise
parameters may be set such that the number of spiral layers
is proportional to Ω(nc) for any constant 0 < c < 1, leading
to the following (see [7] for details):

Example 3.3 (Spiral). The Euclidean “Spiral” graph
of Figure 3 yields a ω(nc) (for any constant c < 1) lower
bound on PoA and PoS under SCmd.

1. Note that for powers higher than 1 these graphs do not
necessarily obey a metric though they are induced by such.

Figure 1: Euclidean Horseshoe

Figure 2: Optimal Nash for Horseshoe

3.2 Observations on the Structure of Nash Equi-
libria

It is not a coincidence that the Nash equilibria examples
thus far have been trees. We briefly return to consideration
of general Nash, including the mixed case:

Remark 3.4. In any connected graph G, Nash equilibria
always exist (guaranteed via MST), and all Nash equilibria
form an acyclic spanning graph with destination t as sink.
In particular every pure Nash equilibria forms a spanning
tree directed towards t.

Note that mixed Nash can be viewed as flows in G and
that any non-zero flow through a cycle will have infinite
cost. Now, given any Nash-induced sub-graph GS , denote
as Tt the maximal acyclic flow in GS including t. Due to
connectedness, if there are any cycles in GS , then there is

Figure 3: Euclidean Spiral
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always some node on some cycle that has a neighbor in Tt,
thus giving finite rather than infinite flow weighted cost (an
infinite flow weighted cost is still infinite), and an incentive
to switch. So, there can be no cycles and Tt spans G. And,
due to the single out-degree nature of pure Nash, if GS is a
pure Nash then Tt is a spanning tree.

It is without loss of generality to consider pure Nash equi-
libria with respect to maxima and minima of our social cost
functions, for the following reason. For any branching out
(i.e. a node forwarding in a mixed manner to more than
one neighbor) that occurs in a mixed Nash, the multiple op-
tions must have identical cost to the branching node (and
given that, the branching node may distribute the proba-
bility flow in any manner). Any mixed flow achieving some
relevant minima or maxima (with respect to PoS or PoA)
can therefore be converted into a directed tree achieving the
same such minima or maxima by continuously shifting the
flow to a path that induces the extreme value. Thus, from
now on we discuss Nash trees without loss of generality.

We may further state the following regarding the structure
of Nash trees:

Remark 3.5. In a weighted graph G, if i is j’s unique
nearest neighbor and j is also i’s unique nearest neighbor,
then we refer to i and j as mutual nearest neighbors. Edges
between mutual nearest neighbors (excluding t) are always
used in some direction, in any Nash tree.

To see this, consider a mutual nearest neighbor pair i, j and
Nash tree T such that edge (i, j) is not used in either direc-
tion. Since the weight of this edge is minimal amongst all
neighbors for both i and j, the only way it cannot be present
in a Nash equilibrium is if it lies on a cycle. But if directing
from i to j would create a cycle, then there must already
be a path from j to i in T , and likewise for the opposite
direction. So there must already be a cycle in T , namely
from i to j and back to i, contradicting that T is a Nash
tree. Thus, (i, j) must be used in some direction in every
Nash tree.

As a corollary, we may also relate this to generating Nash
equilibria. Due to the uniqueness condition in the above
definition, any set of mutual nearest neighbor edges must
be an independent set. Moreover, noting that in a complete
graph we may always complete a spanning tree after fixing
any independent set of edges as a subgraph, we have the
following:

Corollary 3.6. In any complete graph, for every direc-
tionality of the set of mutual nearest neighbor edges (exclud-
ing t) there exists a corresponding Nash equilibrium.

Euclidean graphs are especially relevant cases for analysis
of the LMCF Game. While we have already noted that a
restriction to Euclidean graphs is rich enough to generate
arbitrarily bad examples, this class also has some further
structural properties:

Remark 3.7. For any Nash tree in any 2-dimensional
Euclidean power graph of any power, the incoming node de-
gree is at most 6.

The reason is as follows: Consider a set of seven nodes in-
coming to a vertex v in some Nash tree T . By a regular
hexagonal decomposition into 6 parts, it may be seen that
at least one of these incoming neighbors u must be strictly
closer to another incoming neighbor w than to v. Moreover,

if by switching u’s forwarding choice from v to w a cycle was
created in the graph, then w and hence w’s own forwarding
choice v must have already had a path to u in T . But since
u forwards to v in T , there must already be a cycle through
u in T , contradicting that T is a Nash tree.

Of course, the smallest edge in any graph must consist of a
mutual nearest neighbor pair. Exactly how many might we
expect? To address this question, we may say something in
the case of random instances based on results of [17, 18] on
random Euclidean graphs of any dimension and on results
of [18] on random link graphs.

Remark 3.8. For random Euclidean power instances of
any dimension and any power3, and for random link graphs,
at least half the nodes are expected to be involved in some
mutual nearest neighbor relation.

Recall that the “bad” Euclidean examples, Figure 1 and
Figure 3, each had at most O(1) nodes involved in a mutual
nearest neighbor and a sparse set of possible Nash equilib-
ria. As such situations are highly unlikely, it is reasonable
to hope that greater optimism is warranted for random in-
stances. We discuss this further in Sect. 3.4 and beyond.

3.3 Hardness of Optimal Nash Equilibria
We now provide hardness results for computing and ap-

proximating optimal Nash equilibria.

Theorem 3.9. The optimal Nash equilibrium for the LMCF
Game is NP-Hard to approximate to any constant factor for
both the SCmd and SCstretch social cost functions.

Proof. We start by showing that finding the optimal
Nash equilibrium for SCmd is NP-hard. Following argu-
ments from [10], a related construction then shows NP-
hardness for SCstretch as well as hardness of approximation
for both social cost functions.

The proof of Theorem 3.9 is based on the 3-SAT reduction
of [10] for the minimal-stretch MST problem, modified with
appropriate “choice” gadgets between positive and negative
literals of the same variable. For the purpose of showing NP-
Hardness, the constructed graph G is 3-SAT represented as
the union of the clause-literal bipartite graph with edges of
length B, along with additional paths E between the posi-
tive and negative literals of each variable, as well as a desti-
nation t connected to every literal by edges of length A ≤ B.
The choice gadget for E is simply a symmetric path of edges
with small (meaning even the heaviest edge has small cost)
decreasing cost then increasing cost. This replaces the edges
of path E in [10]’s construction. Note that for every positive
and negative variable nodes, say x and x̄, the choice gadget
enforces that every Nash tree has either a path from x to
x̄ or vice versa. Since each literal is directly connected to
t by an edge shorter than the edge to a clause, the literal
with the incoming path from its corresponding choice gadget
must necessarily then forward to t in every Nash tree as well.
Moreover, each clause must choose one of its corresponding
literals to forward to. Therefore, there are only two possible
kinds of paths from a clause to the destination depending
on the choice gadget’s direction: Zig-zagging B → E → A

or bypassing E via B → A. For every pair of literals, di-
recting E from x̄ to x if the corresponding 3-SAT variable
assignment is true and from x to x̄ if it is false, we see that

3Power does not change nearest neighbor relations.
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a clause node that directs into its chosen literal does not
zig-zag. Since every Nash equilibrium for G uniquely spec-
ifies the direction of all paths E between literals and vice
versa, the reduction is clear: The 3-SAT instance is satisfi-
able iff there exists a choice of all path directions for E such
that no clause zig-zags. For sufficiently long B, zig-zagging
is the only way to increase the directed diameter, and so
NP-hardness for optimal SCmd follows.

For demonstrating NP-hardness for SCstretch as well as
hardness of approximation, the construction is augmented
by an additional node R connected to t by a path of length
D and to the clause nodes via edges of length W. By making
W sufficiently long and D sufficiently short, we can ensure
that zig-zagging is the only way to increase the maximum
stretch for any Nash equilibrium, from which NP-hardness
for optimal SCstretch follows. Finally, following the identi-
cal method as [10], we can set edge and path length to in-
duce an arbitrary constant approximation gap, from which
NP-hardness of approximation follows for both social cost
functions. We refer the reader to [10] for details.

Note that the theorem above also holds under the restriction
to complete graphs, by ensuring that any edges added to this
construction are large enough not to be used in any Nash
equilibrium.

More specifically, we show that it is hard to compute op-
timal Nash equilibria even when we restrict ourselves to the
3-dimensional Euclidean case.

Theorem 3.10. The social cost of the optimal Nash equi-
librium for the LMCF Game on 3-dimensional Euclidean
graphs is NP-Hard to compute for both the SCmd and SCstretch

social cost functions.

Proof. Here, it suffices to modify the 3-SAT construc-
tion G in the previous proof so that it can be embedded
into 3-dimensional Euclidean space. Place the destination
node t at the origin. For each variable xi connect its positive
and negative literal via a choice gadget E as in the previous
proof, and place each such connected pair equidistant from
neighboring pairs on a sufficiently large circle about t. We
introduce a new gadget here as well, which we call the “di-
rectionality” gadget: a sequence of nodes < v0, v1, . . . , vq >

such that for each 0 ≤ i < q the nearest neighbor of vi is
uniquely vi+1. Namely, the distances of consecutive points
is strictly decreasing and chosen small enough to guarantee
that there are no closer points elsewhere in the remaining
construction. Now, for each literal, draw a directionality
gadget from the literal to t along the line connecting those
two points, identical for every pair. These replace the A-
edges in the previous proof, so let us refer to these as A as
well. Note that the choice gadget E is simply two direction-
ality gadgets mirroring each other about the central shortest
edge. Whereas in a Nash equilibrium E has two choices of
direction, A has only one choice of direction: all vi except
possibly v0 direct towards vi+1. We retain the caveat that
the longest edge of E is still shorter than its neighboring
edges outside of E. Now, for the placement of clauses, and
the paths connecting clauses to literals: Place clause nodes
on a sufficiently large sphere about the origin, sufficiently
far apart from each other. For each clause node ci place
three idential directionality gadgets connecting ci to its cor-
responding literals, replacing the edges B in the previous
construction. Note that this can certainly be accomplished
in 3-dimensional space without any two paths B coming too

close by choosing the sufficiently large sphere. Moreover,
these gadgets B can be made identical in total length as
well by elongating short lines by a curve. This completes
the specifications for the construction of the embedding: let
us call it G3D. What remains is this. Every Nash equilib-
rium for the LMCF game on G3D is uniquely determined by
the choice of literal to which ci connects via a B-gadget and
the choice of direction for each E gadget. Again note: The
maximum possible stretch factor and weighted-hop-distance
to t in a Nash equilibrium are achieved by a zig-zagging of
B → E → A. Identically to the previous proof, such zig-
zagging is only necessary for unsatisfiable 3-SAT instances.
The NP-Hardness then follows.

3.4 Heuristics
Given the hardness results, we look to find an intuitive

heuristic to compute Nash trees for LMCF with low So-
cial Cost. First, we present a meta-heuristic, LMHeur, to
compute general Nash equilibria for the LMCF Game. The
main idea behind the meta-heuristic is that since equilibria
are directed trees, for any Nash tree there exists a forward-
ing order such that, maintaining a forest of directed edges
for nodes already chosen, the next chosen node forwards to
its nearest neighbor that does not introduce a cycle into the
forest. The choice of forwarding order may be dictated by
whichever global cost function we wish to optimize, or which
kind of Nash we are looking for.

As we have proposed SCstretch and SCmd as reasonable
social cost functions to consider for the LMCF Game, we
propose the DeltaHeur, a member of the LMHeur class, to
compute good Nash trees. The ordering priority for Delta-
Heur is based on maximal progress towards shortest path. A
priority queue is kept holding the nodes that have yet to for-
ward, sorted by the difference between the candidate node’s
shortest path distance to the destination and its available
nearest neighbor’s shortest path distance to the destination
(“available” means not introducing a cycle within the cur-
rent forest). It is straightforward to show in the Euclidean
case that the ordering induced by the DeltaHeur corresponds
exactly to a “maximum projection” heuristic, which we call
ProjHeur, where the projection in question is that of the
vector from the candidate node to its available nearest neigh-
bor projected onto the vector from the candidate node to the
destination t.

3.5 Expected Social Costs on Random Graphs
While we have given worst-case lower bounds on PoA and

PoS, it is also of practical interest to consider the expected
values of these quantities for classes of random graphs. Here
we discuss the case of random Euclidean instances, arguing
that based on the structure of the MST, PoA is likely to
be ω(1), whereas based on the behavior of DeltaHeur, PoS

may be Θ(1).
The argument for PoA (at least under SCstretch) is as

follows. Consider the MST on nodes placed uniformly at
random in a d-dimensional unit hypercube. Now imagine a
(d − 1)-dimensional hyperplane that cuts one of the edges
incident on t in the spanning tree, but none of the others.
Because of the uniform density of nodes, we expect that this
(curved) hyperplane will pass between many pairs of nodes

separated by distance Θ(n−1/d), i.e., the typical distance
between a node and its close neighbors. The hyperplane
continues to the boundaries of the hypercube, and so some
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of these pairs of nodes are likely to be at constant distance
from t. However, since the nodes in the pair are on oppo-
site sides of the hyperplane, the shortest MST path between
them must pass through the cut edge, and thus be of con-
stant length. While we are concerned with the maximum
stretch factor of a node to t rather than between two arbi-
trary nodes on the graph, note that in the random case, t is
in fact equally likely to be any of the nodes in the MST. This
suggests the maximum stretch factor could be Θ(n1/d), so

PoA would then be Ω(n1/d) under SCstretch. The argument
is qualitatively similar for Euclidean power graphs.

Now consider the behavior of DeltaHeur in constructing
Nash equilibria on the same random Euclidean instances.
Not all directed edges in the Nash tree will point towards t,
but we expect there to be a distinct positive bias in favor
of this: it is easy to show, for instance, that the algorithm
orients all mutual nearest neighbors in the direction of t.
Given that mutual nearest neighbors pairs are a constant
fraction of edges and their angles of orientation are uniform
at random, at each step the expected progress towards des-
tination (the criterion on which DeltaHeur ranks edge) is
likely to be a constant fraction of the edge length. The typ-
ical distance on the Nash tree from a node to t is then a
constant, giving an average (not maximum) social cost of
Θ(1). Moreover, if it turns out that the random variables
representing the progress towards destination along a path
to t are only weakly correlated, the distribution of these dis-
tances will be close to a Gaussian with constant mean and
variance Θ(n−1/d). The maximum of n such Gaussian vari-

ables has mean Θ(α+
√

log n n−1/d) [4] where α is a constant
independent of d, suggesting that this too might be the ex-
pected maximum distance. A very similar argument holds
for maximum stretch factor, leading to the possible scenario
that PoS is Θ(1).

3.6 Experimental Analysis
We have performed a number of simulations in order to

test these predictions, and more generally to assess the qual-
ity of the Delta Heuristic in comparison to directed MSTs
for LMCF. We have run these experiments for 2-dimensional
Euclidean power graphs of powers 1, 2, 3, and random link
graphs. The resulting plots of prices (ratios of the social
cost for the computed Nash to the optimal SPT cost) are
shown in Figures 4 through 11. Each Euclidean power graph
of size n was formed by picking n integer-coordinate points
uniformly at random from a 560x560 grid, with edge weights
induced by the given power of the distance between nodes.
Each random link graph of size n was formed by assign-
ing edge weights uniformly at random from the interval
(0, 10001) independently to each link of the complete graph.
For each random graph instance with size n, ranging from 30
nodes to 350 nodes, we ran

√
n experiments computing the

prices of the DeltaHeur Nash solutions and the MST Nash
solutions and plotted the average price obtained for each
node. The results are summarized in Figures 4, 5, 6, 7, 8, 9,
10, and 11. In all figures note that light blue plot refers to
the directed MST while the dark red plot refers to the Delta-
Heur. If there is a number i in the figure caption, it indicates
that the random graph model considered is a 2-dimensional
Euclidean power graph with power i. Otherwise if capital R

is in the figure caption, the random link model is presented.
Of course, “stretch” in the caption refers to SCstretch price,
whereas MD in the caption refers to SCmd price.

Figure 4: MD1

Figure 5: Stretch1

In all experiments, the concentration of the blue plot can
be seen above the concentration of the red plot, though at
varying angles and to varying degrees of concentration, thus
confirming the intuition that DeltaHeur yields heuristic im-
provement. This improvement is perhaps most pronounced
in the standard Euclidean case under the stretch-based so-
cial cost function, as seen in Figure 5, which is especially of
interest as the DeltaHeur is identically ProjHeur in that
case (and was, in fact originally conceived from such). We
can see that whereas the stretch-based price of DeltaHeur
appears highly concentrated about a small constant, 3, that
of the directed MST is increasing asymptotically. For the
higher powers considered, aside from sparse but extreme
outliers for DeltaHeur (likely due to the increase in variance
with power and limited sample size), the same observation
still holds except that the rate of increase of the directed
MST plot slows with power, and the small constant about
which the DeltaHeur price is concentrated also seems to de-
crease with power. That both prices appear to decrease on
average with power is intuitive: As the power of the dis-
tance grows, SPT preference is given to smaller edges. Both
expected DeltaHeur and MST prices stay near small con-
stants for the maximum distance based (md-based) social
cost function. Even here, MST prices appear growing slowly
whereas DeltaHeur prices demonstrate stability at constants
close to 1. For the random link models under both social cost
functions, both DeltaHeur and MST prices appear growing,
though for the stretch-based pricing, again MST appears
growing asymptotically faster, and there is too much vari-
ance in the DeltaHeur plot to make further inferences. Here
also, DeltaHeur is still an improvement over MST (whether
by a constant or asymptotically growing factor), and the
md-prices are still quite small.

Finally, it is interesting to note that these results for
DeltaHeur may be explained by our Euclidean predictions
together with an interpretation of the random link model
as the limit of a Euclidean model in high dimensions. If
the expected DeltaHeur social cost is Θ(α +

√
log n n−1/d),
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Figure 6: MD2

Figure 7: Stretch2

then unlike for finite d where this is constant, in the large
d limit it grows logarithmically. This is consistent with our
simulations.

4. CONCLUSION
The primary observation throughout the plots is as fol-

lows: For both random link graphs and Euclidean power
graphs, DeltaHeur is consistently cheaper than the MST
for LMCF under both SCmd and SCstretch. In particular:
With respect to both social cost functions considered, while
the expected MST price grows asymptotically, the ex-
pected price of DeltaHeur stays concentrated at small

constants throughout the 2-dimensional Euclidean power
instances for powers 1, 2, 3, validating the usefulness of the
DeltaHeur for all-to-one topology-control in the presence of
selfish node behavior.
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