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Abstract: We present a graph-based variational algorithm for multiclass classification of high-dimensional data, moti-
vated by total variation techniques. The energy functional is based on a diffuse interface model with a periodic
potential. We augment the model by introducing an alternative measure of smoothness that preserves sym-
metry among the class labels. Through this modification of the standard Laplacian, we construct an efficient
multiclass method that allows for sharp transitions between classes. The experimental results demonstrate that
our approach is competitive with the state of the art among other graph-based algorithms.

1 INTRODUCTION

Many tasks in pattern recognition and machine learn-
ing rely on the ability to quantify local similarities in
data, and to infer meaningful global structure from
such local characteristics (Coifman et al., 2005). In
the classification framework, the desired global struc-
ture is a descriptive partition of the data into cate-
gories or classes. Many studies have been devoted
to the binary classification problems. The multiple-
class case, where the data is partitioned into more than
two clusters, is more challenging. One approach is
to treat the problem as a series of binary classifica-
tion problems (Allwein et al., 2000). In this paper, we
develop an alternative method, involving a multiple-
class extension of the diffuse interface model intro-
duced in (Bertozzi and Flenner, 2012).

The diffuse interface model by Bertozzi and Flen-
ner combines methods for diffusion on graphs with ef-
ficient partial differential equation techniques to solve
binary segmentation problems. As with other meth-
ods inspired by physical phenomena (Bertozzi et al.,
2007; Jung et al., 2007; Li and Kim, 2011), it requires
the minimization of an energy expression, specifi-
cally the Ginzburg-Landau (GL) energy functional.
The formulation generalizes the GL functional to the
case of functions defined on graphs, and its minimiza-
tion is related to the minimization of weighted graph
cuts (Bertozzi and Flenner, 2012). In this sense, it par-
allels other techniques based on inference on graphs
via diffusion operators or function estimation (Coif-

man et al., 2005; Chung, 1997; Zhou and Schölkopf,
2004; Szlam et al., 2008; Wang et al., 2008; Bühler
and Hein, 2009; Szlam and Bresson, 2010; Hein and
Setzer, 2011).

Multiclass segmentation methods that cast the
problem as a series of binary classification problems
use a number of different strategies: (i) deal di-
rectly with some binary coding or indicator for the la-
bels (Dietterich and Bakiri, 1995; Wang et al., 2008),
(ii) build a hierarchy or combination of classifiers
based on the one-vs-all approach or on class rank-
ings (Hastie and Tibshirani, 1998; Har-Peled et al.,
2003) or (iii) apply a recursive partitioning scheme
consisting of successively subdividing clusters, until
the desired number of classes is reached (Szlam and
Bresson, 2010; Hein and Setzer, 2011). While there
are advantages to these approaches, such as possible
robustness to mislabeled data, there can be a consid-
erable number of classifiers to compute, and perfor-
mance is affected by the number of classes to parti-
tion.

In contrast, we propose an extension of the diffuse
interface model that obtains a simultaneous segmen-
tation into multiple classes. The multiclass extension
is built by modifying the GL energy functional to re-
move the prejudicial effect that the order of the la-
belings, given by integer values, has in the smoothing
term of the original binary diffuse interface model. A
new term that promotes homogenization in a multi-
class setup is introduced. The expression penalizes
data points that are located close in the graph but are
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not assigned to the same class. This penalty is ap-
plied independently of how different the integer val-
ues are, representing the class labels. In this way, the
characteristics of the multiclass classification task are
incorporated directly into the energy functional, with
a measure of smoothness independent of label order,
allowing us to obtain high-quality results. Alterna-
tive multiclass methods minimize a Kullback-Leibler
divergence function (Subramanya and Bilmes, 2011)
or expressions involving the discrete Laplace operator
on graphs (Zhou et al., 2004; Wang et al., 2008).

This paper is organized as follows. Section 2 re-
views the diffuse interface model for binary classifica-
tion, and describes its application to semi-supervised
learning. Section 3 discusses our proposed multiclass
extension and the corresponding computational algo-
rithm. Section 4 presents results obtained with our
method. Finally, section 5 draws conclusions and de-
lineates future work.

2 DATA SEGMENTATION WITH
THE GINZBURG-LANDAU
MODEL

The diffuse interface model (Bertozzi and Flenner,
2012) is based on a continuous approach, using the
Ginzburg-Landau (GL) energy functional to measure
the quality of data segmentation. A good segmenta-
tion is characterized by a state with small energy. Let
u(x) be a scalar field defined over a space of arbitrary
dimensionality, and representing the state of the sys-
tem. The GL energy is written as the functional

EGL(u) =
e

2

Z
jÑuj2 dx+

1
e

Z
F(u) dx; (1)

with Ñ denoting the spatial gradient operator, e > 0
a real constant value, and F a double well potential
with minima at �1:

F(u) =
1
4
�
u2�1

�2
: (2)

Segmentation requires minimizing the GL func-
tional. The norm of the gradient is a smoothing term
that penalizes variations in the field u. The potential
term, on the other hand, compels u to adopt the dis-
crete labels of +1 or �1, clustering the state of the
system around two classes. Jointly minimizing these
two terms pushes the system domain towards homo-
geneous regions with values close to the minima of
the double well potential, making the model appro-
priate for binary segmentation.

The smoothing term and potential term are in con-
flict at the interface between the two regions, with the

first term favoring a gradual transition, and the second
term penalizing deviations from the discrete labels. A
compromise between these conflicting goals is estab-
lished via the constant e. A small value of e denotes a
small length transition and a sharper interface, while
a large e weights the gradient norm more, leading to
a slower transition. The result is a diffuse interface
between regions, with sharpness regulated by e.

It can be shown that in the limit e! 0 this func-
tion approximates the total variation (TV) formulation
in the sense of functional (G) convergence (Kohn and
Sternberg, 1989), producing piecewise constant solu-
tions but with greater computational efficiency than
conventional TV minimization methods. Thus, the
diffuse interface model provides a framework to com-
pute piecewise constant functions with diffuse tran-
sitions, approaching the ideal of the TV formulation,
but with the advantage that the smooth energy func-
tional is more tractable numerically and can be mini-
mized by simple numerical methods such as gradient
descent.

The GL energy has been used to approximate the
TV norm for image segmentation (Bertozzi and Flen-
ner, 2012) and image inpainting (Bertozzi et al., 2007;
Dobrosotskaya and Bertozzi, 2008). Furthermore, a
calculus on graphs equivalent to TV has been intro-
duced in (Gilboa and Osher, 2008; Szlam and Bres-
son, 2010).

Application of Diffuse Interface Models
to Graphs

An undirected, weighted neighborhood graph is used
to represent the local relationships in the data set. This
is a common technique to segment classes that are
not linearly separable. In the N-neighborhood graph
model, each vertex zi 2 Z of the graph corresponds
to a data point with feature vector xi, while the weight
wi j is a measure of similarity between zi and z j. More-
over, it satisfies the symmetry property wi j =w ji. The
neighborhood is defined as the set of N closest points
in the feature space. Accordingly, edges exist be-
tween each vertex and the vertices of its N-nearest
neighbors. Following the approach of (Bertozzi and
Flenner, 2012), we calculate weights using the local
scaling of Zelnik-Manor and Perona (Zelnik-Manor
and Perona, 2005),

wi j = exp
�
�
jjxi� x jjj2

t(xi) t(x j)

�
: (3)

Here, t(xi) = jjxi�xM
i jj defines a local value for each

xi, where xM
i is the position of the Mth closest data

point to xi, and M is a global parameter.
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It is convenient to express calculations on graphs
via the graph Laplacian matrix, denoted by L. The
procedure we use to build the graph Laplacian is as
follows.

1. Compute the similarity matrix W with compo-
nents wi j defined in (3). As the neighborhood re-
lationship is not symmetric, the resulting matrix
W is also not symmetric. Make it a symmetric ma-
trix by connecting vertices zi and z j if zi is among
the N-nearest neighbors of z j or if z j is among the
N-nearest neighbors of zi (von Luxburg, 2006).

2. Define D as a diagonal matrix whose ith diago-
nal element represents the degree of the vertex zi,
evaluated as

di = å
j

wi j: (4)

3. Calculate the graph Laplacian: L = D�W .

Generally, the graph Laplacian is normalized to guar-
antee spectral convergence in the limit of large sample
size (von Luxburg, 2006). The symmetric normalized
graph Laplacian Ls is defined as

Ls = D�1=2 L D�1=2 = I�D�1=2 W D�1=2: (5)

Data segmentation can now be carried out through
a graph-based formulation of the GL energy. To
implement this task, a fidelity term is added to the
functional as initially suggested in (Dobrosotskaya
and Bertozzi, 2010). This enables the specification
of a priori information in the system, for example
the known labels of certain points in the data set.
This kind of setup is called semi-supervised learning
(SSL). The discrete GL energy for SSL on graphs can
be written as (Bertozzi and Flenner, 2012):

EGLSSL(u) =
e

2
hu;Lsui+

1
e

å
zi2Z

F(u(zi))

+ å
zi2Z

l(zi)

2
(u(zi)�u0(zi))

2 (6)

In the discrete formulation, u is a vector whose com-
ponent u(zi) represents the state of the vertex zi, e > 0
is a real constant characterizing the smoothness of
the transition between classes, and l(zi) is a fidelity
weight taking value l> 0 if the label u0(zi) (i.e. class)
of the data point associated with vertex zi is known
beforehand, or l(zi) = 0 if it is not known (semi-
supervised).

Equation (6) may be understood as an example of
the more general form of an energy functional for data
classification,

E(u) = jjujja +
l

2
jju� f jjpb ; (7)

where the norm jjujja is a regularization term and
jju� f jjb is a fidelity term. The choice of the reg-
ularization norm jj � jja has non-trivial consequences
in the final classification accuracy. Attractive quali-
ties of the norm jj � jja include allowing classes to be
close in a metric space, and obtain segmentations for
nonlinearly separable data. Both of these goals are
addressed using the GL energy functional for SSL.

Minimizing the functional simulates a diffusion
process on the graph. The information of the few la-
bels known is propagated through the discrete struc-
ture by means of the smoothing term, while the po-
tential term clusters the vertices around the states �1
and the fidelity term enforces the known labels. The
energy minimization process itself attempts to reduce
the interface regions. Note that in the absence of the
fidelity term, the process could lead to a trivial steady-
state solution of the diffusion equation, with all data
points assigned the same label.

The final state u(zi) of each vertex is obtained by
thresholding, and the resulting homogeneous regions
with labels of +1 and�1 constitute the two-class data
segmentation.

3 MULTICLASS EXTENSION

The double-well potential in the diffuse interface
model for SSL flows the state of the system towards
two definite labels. Multiple-class segmentation re-
quires a more general potential function F(u) that al-
lows clusters around more than two labels. For this
purpose, we use the periodic-well potential suggested
by Li and Kim (Li and Kim, 2011),

F(u) =
1
2
fug2 (fug�1)2; (8)

where fug denotes the fractional part of u,

fug= u�buc; (9)

and buc is the largest integer not greater than u.
This periodic potential well promotes a multiclass

solution, but the graph Laplacian term in Equation (6)
also requires modification for effective calculations
due to the fixed ordering of class labels in the multi-
ple class setting. The graph Laplacian term penalizes
large changes in the spatial distribution of the system
state more than smaller gradual changes. In a multi-
class framework, this implies that the penalty for two
spatially contiguous classes with different labels may
vary according to the (arbitrary) ordering of the la-
bels.

This phenomenon is shown in Figure 1. Sup-
pose that the goal is to segment the image into three
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classes: class 0 composed by the black region, class
1 composed by the gray region and class 2 composed
by the white region. It is clear that the horizontal in-
terfaces comprise a jump of size 1 (analogous to a
two class segmentation) while the vertical interface
implies a jump of size 2. Accordingly, the smoothing
term will assign a higher cost to the vertical interface,
even though from the point of view of the classifica-
tion, there is no specific reason for this. In this ex-
ample, the problem cannot be solved with a different
label assignment. There will always be an interface
with higher costs than others independent of the inte-
ger values used.

Thus, the multiclass approach breaks the sym-
metry among classes, influencing the diffuse inter-
face evolution in an undesirable manner. Eliminating
this inconvenience requires restoring the symmetry,
so that the difference between two classes is always
the same, regardless of their labels. This objective is
achieved by introducing a new class difference mea-
sure.

Figure 1: Three class segmentation. Black: class 0. Gray:
class 1. White: class 2.

3.1 Generalized Difference Function

The final class labels are determined by thresholding
each vertex u(zi), with the label yi set to the nearest
integer:

yi =

�
u(zi)+

1
2

�
: (10)

The boundaries between classes then occur at
half-integer values corresponding to the unstable
equilibrium states of the potential well. Define the
function r̂(x) to represent the distance to the nearest
half-integer:

r̂(x) =
����12 �fxg

���� : (11)

A schematic of r̂(x) is depicted in Figure 2. The
r̂(x) function is used to define a generalized differ-
ence function between classes that restores symmetry
in the energy functional. Define the generalized dif-
ference function r as:

r(u(zi);u(z j))=

8<: r̂(u(zi))+ r̂(u(z j)) yi 6= y j��r̂(u(zi))� r̂(u(z j))
�� yi = y j

(12)

t
�

�
�

�

@
@
@
@ aaa

Half-integer

Integer

�
�
�

@

@

r̂(x)

Figure 2: Schematic interpretation of generalized differ-
ence: r̂(x) measures distance to nearest half-integer, and r

then corresponds to distance on tree.

Thus, if the vertices are in different classes, the
difference r̂(x) between each state’s value and the
nearest half-integer is added, whereas if they are in
the same class, these differences are subtracted. The
function r(x;y) corresponds to the tree distance (see
Fig. 2). Strictly speaking, r is not a metric since it
does not satisfy r(x;y) = 0) x= y. Nevertheless, the
cost of interfaces between classes becomes the same
regardless of class labeling when this generalized dis-
tance function is implemented.

The GL energy functional for SSL, using the new
generalized difference function r, is expressed as

EMGLSSL(u) =
e

2 å
zi2Z

å
z j2Z

wi jp
did j

[r(u(zi);u(z j)) ]
2

+
1
2e

å
zi2Z
fu(zi)g2 (fu(zi)g�1)2

+ å
zi2Z

l(zi)

2
(u(zi)�u0(zi))

2 : (13)

Note that r could also be used in the fidelity term,
but for simplicity this modification is not included. In
practice, this has little effect on the results.

3.2 Computational Algorithm

The GL energy functional given by (13) may be min-
imized iteratively, using gradient descent:

um+1
i = um

i �dt
�

dEMGLSSL

dui

�
; (14)

where ui is a shorthand for u(zi), dt represents the
time step and the gradient direction is given by:

dEMGLSSL

dui
= eG(um

i )+
1
e

F 0(um
i )+li (um

i �ui0) (15)

G(um
i ) = å

j

wi jp
did j

�
r̂(um

i )� r̂(um
j )
�

r̂0(um
i ) (16)

F 0(um
i ) = 2 fum

i g3�3 fum
i g2 +fum

i g (17)

The gradient of the generalized difference function r

is not defined at half integer values. Hence, we mod-
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Algorithm 1: Calculate u.

Require: e > 0;dt > 0;mmax > 0;K given
Ensure: out = ummax

u0 rand((0;K))� 1
2 ; m 0

for m < mmax do
i 0
for i < n do

um+1
i  um

i �dt
�
e G(um

i )+
1
e

F 0(um
i )+li (um

i �ui0)
�

if Label(um+1
i ) 6= Label(um

i ) then
(vi)k k+fum+1

i g
um+1

i  (vi)k where k = argmin 0�k<K å j
wi jp
did j

[r((vi)k;u j) ]
2

end if
i i+1

end for
m m+1

end for

ify the method using a greedy strategy: after detecting
that a vertex changes class, the new class that min-
imizes the smoothing term is selected, and the frac-
tional part of the state computed by the gradient de-
scent update is preserved. Consequently, the new state
of vertex i is the result of gradient descent, but if this
causes a change in class, then a new state is deter-
mined.

Specifically, let k represent an integer in the range
of the problem, i.e. k2 [0;K�1], where K is the num-
ber of classes in the problem. Given the fractional
part fug resulting from the gradient descent update,
define (vi)k = k+ fuig. Find the integer k that mini-
mizes å j

wi jp
did j

[r((vi)k;u j) ]
2, the smoothing term in

the energy functional, and use (vi)k as the new vertex
state. A summary of the procedure is shown in Algo-
rithm 1 with mmax denoting the maximum number of
iterations.

4 RESULTS

The performance of the multiclass diffuse interface
model is evaluated using a number of data sets from
the literature, with differing characteristics. Data and
image segmentation problems are considered on syn-
thetic and real data sets.

4.1 Synthetic Data

A synthetic three-class segmentation problem is
constructed following an analogous procedure used
in (Bühler and Hein, 2009) for “two moon” bi-
nary classification, using three half circles (“three
moons”). The half circles are generated in R2. The

two top circles have radius 1 and are centered at (0;0)
and (3;0). The bottom half circle has radius 1:5
and is centered at (1:5;0:4). We sample 1500 data
points (500 from each of these half circles) and em-
bed them in R100. The embedding is completed by
adding Gaussian noise with s2 = 0:02 to each of the
100 components for each data point. The dimension-
ality of the data set, together with the noise, make this
a nontrivial problem.

The difficulty of the problem is illustrated in Fig-
ure 3, where we use both spectral clustering decompo-
sition and the multiclass GL method. The same graph
structure is used for both methods. The symmetric
graph Laplacian is computed based on edge weights
given by (3), using N = 10 nearest neighbors and lo-
cal scaling based on the M = 10 closest point. The
spectral clustering results are obtained by applying a
k-means algorithm to the first 3 eigenvectors of the
symmetric graph Laplacian. The average error ob-
tained, over 100 executions of spectral clustering, is
20% (�0:6%). The figure displays the best result ob-
tained, corresponding to an error of 18:67%.

The multiclass GL method was implemented with
the following parameters: interface scale e = 1, step
size dt = 0:01 and number of iterations mmax = 800.
The fidelity term is determined by labeling 25 points
randomly selected from each class (5% of all points),
and setting the fidelity weight to l = 30 for those
points. Several runs of the procedure are performed
to isolate effects from the random initialization and
the arbitrary selection of fidelity points. The aver-
age error obtained, over 100 runs with four differ-
ent fidelity sets, is 5.2% (�1:01%). In general terms,
the system evolves from an initially inhomogeneous
state, rapidly developing small islands around fidelity
points that become seeds for homogeneous regions
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Figure 3: Three-class segmentation. Left: spectral clustering. Right: multiclass GL (adaptive e).

and progressing to a configuration of classes forming
nearly uniform clusters.

The multiclass results were further improved by
incrementally decreasing e to allow sharper transi-
tions between states as in (Bertozzi and Flenner,
2012). With this approach, the average error obtained
over 100 runs is reduced to 2.6% (�0:3%). The best
result obtained in these runs is displayed in Figure 3
and corresponds to an average error of 2.13%. In
these runs, e is reduced from e0 = 2 to e f = 0:1 in
decrements of 10%, with 40 iterations performed per
step. The average computing time per run in this
adaptive technique is 1.53s in an Intel Quad-Core @
2.4 GHz, without any parallel processing.

For comparison, we note the results from the liter-
ature for the simpler two moon problem (R100, s2 =
0:02 noise). The best errors reported include: 6% for
p-Laplacian (Bühler and Hein, 2009), 4.6% for ratio-
minimization relaxed Cheeger cut (Szlam and Bres-
son, 2010), and 2.3% for binary GL (Bertozzi and
Flenner, 2012). While these are not SSL methods the
last of these does involve other prior information in
the form of a mass balance constraint. It can be seen
that both of our procedures, fixed and adaptive e, pro-
duce high-quality results even for the more complex
three-class segmentation problem. Calculation times
are also competitive with those reported for the binary
case (0.5s - 50s).

4.2 Image Segmentation

As another test setup, we use a grayscale image of
size 191� 196, taken from (Jung et al., 2007; Li and
Kim, 2011) and composed of 5 classes: black, dark
gray, medium gray, light gray and white. This image
contains structure, such as an internal hole and junc-
tions where multiple classes meet. The image infor-
mation is represented through feature vectors defined
as (xi;yi;pixi), with xi and yi corresponding to (x;y)
coordinates of the pixel and pixi equal to the inten-
sity of the pixel. All of these are normalized so as to

obtain values in the range [0;1].
The graph is constructed using N = 30 nearest

neighbors and local scaling based on the M = 30 clos-
est point. We use parameters e = 1, dt = 0:01 and
mmax = 800. We then choose 1500 random points (4%
of the total) for the fidelity term, with l = 30. Fig-
ure 4 displays the original image with the randomly
selected fidelity points (top left), and the five-class
segmentation. Each class image shows in white the
pixels identified as belonging to the class, and in black
the pixels of the other classes. In this case, all the
classes are segmented perfectly with an average run
time of 59.7s. The method of Li and Kim (Li and
Kim, 2011) also segments this image perfectly, with
a reported run time of 0.625s. However, their ap-
proach uses additional information, including a pre-
assignment of specific grayscale levels to classes, and
the overall densities of each class. Our approach does
not require these.

4.3 MNIST Data

The MNIST data set available at http://
yann.lecun.com/exdb/mnist/ is composed of 70,000
images of size 28� 28, corresponding to a broad
sample of handwritten digits 0 through 9. We use
the multiclass diffuse interface model to segment
the data set automatically into 10 classes, one per
handwritten digit. Before constructing the graph, we
preprocess the data by normalizing and projecting
into 50 principal components, following the approach
in (Szlam and Bresson, 2010). No further steps, such
as smoothing convolutions, are required. The graph
is computed with N = 10 nearest neighbors and local
scaling based on the M = 10 closest points.

An adaptive e variant of the algorithm is imple-
mented, with parameters e0 = 2, e f = 0:01, e decre-
ment 10%, dt = 0:01, and 40 iterations per step. For
the fidelity term, 7,000 images (10% of total) are cho-
sen, with weight l = 30. The average error obtained,
over 20 runs with four different fidelity sets, is 7%
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Figure 4: Image Segmentation Results. Top left: Original five-class image, with randomly chosen fidelity points displayed.
Other panels: the five segmented classes, shown in white.

(�0:072%). The confusion matrix for the best result
obtained, corresponding to a 6.86% error, is given in
Table 1: each row represents the segmentation ob-
tained, while the columns represent the true digit la-
bels. For reference, the average computing time per
run in this adaptive technique is 132s. Note that, in
the segmentations, the largest mistakes made are in
trying to distinguish digits 4 from 9 and 7 from 9.

For comparison, errors reported using unsu-
pervised clustering algorithms in the literature
are: 12.9% for p-Laplacian (Bühler and Hein,
2009), 11.8% for ratio-minimization relaxed Cheeger
cut (Szlam and Bresson, 2010), and 12.36% for the
multicut version of the normalized 1-cut (Hein and
Setzer, 2011). A more sophisticated graph-based
diffusion method applied in a semi-supervised setup
(transductive classification), with function-adapted
eigenfunctions, a graph constructed with 13 neigh-
bors, and self-tuning with the 9th neighbor reported
in (Szlam et al., 2008) obtains an error of 7.4%. Re-
sults with similar errors are reported in (Liu et al.,
2010). Thus, the performance of the multiclass GL
on this data set improves upon other published results,
while requiring less preprocessing and a simpler reg-
ularization of the functions on the graph.

5 CONCLUSIONS

We have proposed a new multiclass segmentation pro-
cedure, based on the diffuse interface model. The
method obtains segmentations of several classes si-
multaneously without using one-vs-all or alterna-
tive sequences of binary segmentations required by
other multiclass methods. The local scaling method
of Zelnik-Manor and Perona, used to construct the

graph, constitutes a useful representation of the char-
acteristics of the data set and is adequate to deal with
high-dimensional data.

Our modified diffusion method, represented by
the non-linear smoothing term introduced in the
Ginzburg-Landau functional, exploits the structure of
the multiclass model and is not affected by the or-
dering of class labels. It efficiently propagates class
information that is known beforehand, as evidenced
by the small proportion of fidelity points (4% - 10%
of dataset) needed to perform accurate segmentations.
Moreover, the method is robust to initial conditions.
As long as the initialization represents all classes uni-
formly, different initial random configurations pro-
duce very similar results. The main limitation of
the method appears to be that fidelity points must be
representative of class distribution. As long as this
holds, such as in the examples discussed, the long-
time behavior of the solution relies less on choosing
the “right” initial conditions than do other learning
techniques on graphs.

State-of-the-art results with small classification
errors were obtained for all classification tasks. Fur-
thermore, the results do not depend on the particular
class label assignments. Future work includes inves-
tigating the diffuse interface parameter e. We con-
jecture that the proposed functional converges (in the
G-convergence sense) to a total variational type func-
tional on graphs as e approaches zero, but the exact
nature of the limiting functional is unknown.
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