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Abstract: We consider the problem of all-to-one selfish routing in the absence of a payment
scheme in wireless sensor networks, where a natural model for cost is the power required to
forward, referring to the resulting game as a Locally Minimum Cost Forwarding (LMCF). Our
objective is to characterize equilibria and their global costs in terms of stretch and diameter,
in particular finding incentive compatible algorithms that are also close to globally optimal.
We find that although social costs for equilibria of LMCF exhibit arbitrarily bad worst-case
bounds and computational infeasibility of reaching optimal equilibria, there exist greedy and
local incentive compatible heuristics achieving near-optimal global costs.
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1. Introduction

Incentive-compatible topology control protocols play a central role in selfish wireless networking.
These protocols determine which links are to be used for forwarding data packets from sources to desti-
nations. Non-selfish topology control involves selecting a subset of possible communication edges such
that the resulting induced subgraph satisfies a number of desirable properties, such as being a single com-
ponent, having small maximum degree, and preserving shortest paths within a small factor (see [1, 2]
for an overview of topology control results). Incentive-compatible topology control has only recently re-
ceived attention from the wireless network research community, with the two traditional game-theoretic
approaches being to characterize Nash equilibria [3–5] and to design VCG-based mechanisms for ad-hoc
networks [3, 4, 6–9].

A wireless sensor node is capable of monitoring the environment or sensing an occurrence of a par-
ticular event. A collection of such nodes is called a wireless sensor network [10]. Sensor nodes are often
deployed in an ad-hoc manner and they send the sensed information to a base-station or a cluster head
which acts as a data collection point. As often sensor nodes are deployed on a far off location and are
battery-powered, they are highly energy-constrained. Thus energy efficiency is an important parameter
in evaluating the performance of any protocol designed for sensor networks. Reverse multicast traffic is
more common in a wireless sensor network as multiple nodes send the sensed information to a single
data collection point and due to the energy constraint, a sensor node will often choose to send the data in
a multihop fashion so as to avoid transmission over a long distance [11]. Thus a sensor network can be
modelled as a collection of selfish nodes with reverse multicast traffic.

We study selfish topology control where all participating nodes need to have a path to a single desti-
nation. This might be a central processing node in a sensor network, the access point (AP) that allows
the nodes to connect to the Internet, or a base station in a hybrid cell phone network. Our cost and utility
model is as follows.

Individual nodes care only about minimizing their own power consumption given that they must for-
ward what has been given to them in this reverse-multicast scenario, and adopt their strategies accord-
ingly, whereas the global objective is to minimize the total energy used. In other words, the social goal
is to minimize the expected amount of power consumed by transmitting a single message from source to
destination. Assuming fixed routing tables (pure strategy) this will also be the cost-per-message in the
long term. We assume that messages are generated at random sources. For simplicity we will assume
uniformly at random, but all our results will hold for any probability distribution, which guarantees that
each node has a non-zero probability of being a message source. Specifically, define:

• qv = load generated at node v

• Qv = total outgoing load at v from all data passing through v

• cv = cost per-bit of forwarding from v to v’s chosen neighbor

• PATHv = sum of ci along the path from v to the destination

Player v wants to minimize Qvcv, but has no control over Qv and can only minimize cv. The global
objective is to minimize the total induced load times the forwarding cost,

∑
v Qvcv =

∑
v qvPATHv.
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Given an aggregate load
∑

v qv, the worst-case distribution would be concentrated along the most costly
path, with exactly one nonzero qv. The global objective is therefore to keep that longest directed
path short.

Since a node’s interest is limited to having a path to the destination, and it does not care how long
that path is, so long as its individual or local forwarding cost is minimized, we refer to this setting
as a Locally Minimum Cost Forwarding Game (LMCF). Of course, from a system-wide perspective,
short paths are desirable, as explained above so that our social optimum objectives are the following:
(i) minimize the maximum stretch factor1 in the resulting topology with respect to true shortest path
distances, or (ii) minimize the cost of the longest path in the resulting topology. Our aim is to find and to
characterize Nash equilibria that optimize the social objective. The ratio of the objective value achieved
by the best Nash equilibrium and the (non-selfish) value of the social optimum is called the price of
stability, whereas that ratio for the worst Nash equilibrium is called the price of anarchy[12–14].

The prices of stability and anarchy have been extensively investigated in other network settings
under other objectives, particularly for congestion-based games and fair-allocation games (for exam-
ple [12–15]). The problem of finding good Nash equilibria in the context of topology-control for ad-hoc
networks has also been investigated [3, 4, 6–9]. We note that the LMCF game differs from previously
considered games in its objectives, both individually and socially. Our work is related to the non-game-
theoretic results of [16] that construct spanning structures balancing edge costs, i.e., Minimum Spanning
Trees(MSTs), and path costs, i.e., Shortest Path Trees (SPTs). However the game-theoretic aspect of this
work, in particular the locality of individual preferences, makes a crucial difference as the algorithms of
[16] do not directly relate to Nash equilibria for LMCF.

We prove that Nash equilibria always exist for LMCF, and that in fact a minimum spanning tree is
always a Nash, albeit rarely a socially optimal one. We give examples showing that both the prices of
anarchy and stability can be linear with respect to the stretch-based social cost objective and ω(nc) for
any c < 1 for the maximum-distance-based cost function. We show NP-hardness and inapproximability
results for the problem of finding the socially optimal Nash equilibrium. We observe that there is hope
for positive average results in various random graph models, such as Euclidean power cost functions,
which is a common model for communication costs in ad-hoc networks (Section 3.), in view of previous
work indicating that many nodes are involved in mutual nearest neighbor pairs in the relevant random
models [17, 18]. We propose a greedy heuristic, DeltaHeur, that we test in simulation, and find that
the quality of the Nash equilibria found appear independent of the instance size (this is not true for a
straight-forward MST heuristic). Our experiments suggest a plausible ω(1) average price of anarchy and
Θ(1) average price of stability, and supports the use of our heuristic as a topology-control protocol for
selfish all-to-one routing in ad-hoc networks.

However, as DeltaHeur requires complete information of node locations, which may be unrealistic in
some wireless scenarios (in particular in the presence of mobility), in this work we consider a new locally
computable heuristic “recommendation algorithm”, which we refer to as LocalHeur for convenience.
LocalHeur lies within the class of location based routing methods [19–22] with particular similarity

1Given a designated destination t, the stretch factor of a weighted directed subgraph Gs of G is the maximum ratio of a
node’s distance to t in Gs compared with its distance to t in G. Intuitively, this measures the dilation of paths of t in Gs w.r.t
G. Note that when t is not designated, the stretch of Gs simply takes the maximum respective ratio over all-pairs distances.
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to the Nearest Forward Progress (NFP) algorithm [22] though from the perspective of game-theoretic
reverse multicast routing.

We find that LocalHeur actually outperforms DeltaHeur in terms of global optimality in random Eu-
clidean power instances that model wireless networks, though at the expense of loosening the Nash equi-
librium condition. Nonetheless, we find that the relaxation of the Nash condition is strongly bounded in
multiple ways, with high probability: The vast majority of players are provably playing a best response,
while simulation results demonstrate that the average deviation ratio from a best response is within a
decimal point of 1. Furthermore, the player deviating most from his best response is provably still within
O(log n)2 of the cost of his best response, while simulation results support a much smaller maximum
deviation from the best response. Finally, under the assumption of local information, it may be more
costly for a player to check whether forwarding to a closer player who is behind him would create a
cycle than it would be to simply forward to the closest player ahead of him, thus making LocalHeur
configurations candidates for equilibria under incomplete information.

2. Model and Background

Definition 2..1 (LMCF Game). Given a connected, undirected, edge-weighted graph G = (V,E) (with
V = (1, 2, . . . , n), weight function w : E → R3 and designated destination node t, LMCF (G,w, t)

consists of the following: Players are nodes v ∈ V \ {t}, each player v with strategy set N(v) = {
one-hop neighbors of v}. Given a pure strategy-tuple S = (s1, s2, . . . , sn−1) refer to GS , the graph
induced by S, as the directed graph formed by the set of directed edges of the form (u, su). Finally, the
cost cS(v) of strategy-tuple S to player v is cS(v) = w(v, sv) if GS contains a path from v to t and ∞
otherwise.

For any node v and any strategy-tuple S, at most one path may exist from v to t in GS . Denote by
distS(v) the total weight of that path if such exists and ∞ otherwise. Clearly, this distance is minimum
in a shortest path tree (SPT) rooted at t. Denote the shortest path distance by dist(v). Now, we present
two alternative formulations for the Social Cost of a strategy-tuple S for the LMCF Game. The first is
based on the stretch factor of node-destination paths in GS , the second based directly on the maximum
distance of any node to the destination in GS .

SCstretch(S) = maxv∈V \{t}
distS(v)

dist(v)
(1)

SCmd(S) = maxv∈V \{t}distS(v) (2)

As we are concerned with the relative social optimality of a strategy-tuple, in a manner consistent
with the literature we denote the price of a strategy tuple S to be the ratio of the social cost of S over
the social cost of the globally optimal strategy, which for the LMCF game is the SPT. In an incentive
compatible topology control problem, the goal is to find a “recommendation algorithm” for selfish nodes
to forward such that the nodes are in a Nash equilibrium or approximate Nash equilibrium configuration

2n is the number of players
3In a Euclidean power graph of power p the weight function is simply the pth power of the Euclidean distance between

the two nodes.
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that also performs well socially. A Nash equilibrium is a fixed-point best-response strategy profile: a
strategy-tuple from which no agent has a unilateral incentive to deviate, i.e., any such deviation would
not improve the cost to the agent. The price of anarchy, PoA, with respect to a social cost function
on a given instance is the maximum (worst) ratio of the social cost of a Nash equilibrium to the best
possible social cost (that for the SPT). The price of stability, PoS, is the minimum (best) such ratio. We
investigate the price of anarchy and price of stability, as well as their computability, for Nash equilibria
of the Locally Minimum Cost Forwarding (LMCF) Game. We study these quantities in both the worst-
case and average-case. Since by definition SCstretch(S) = 1 for the SPT, PoA and PoS over SCstretch

are precisely the maximum and minimum social cost over all Nash equilibria.
We will focus on the prices of anarchy and stability on Euclidean power graphs and random link

graphs. A Euclidean p-power graph in dimension d is a complete graph consisting of nodes embedded
into d-dimensional Euclidean space with edge weights defined by w(i, j) = dp(i, j), the pth power of the
distance.4 Random Euclidean power graphs are induced by placing each node uniformly at random into
the d-dimensional unit-cube. These are especially relevant models of wireless ad-hoc sensor networks
due to the randomness of placement and the modeling of energy, when p = d = 2.

Given that our reverse multicast problem is motivated by incentive compatible topology control for
wireless sensor networks, we consider “recommendation algorithms” to achieve good Nash equilibria, or
good near-equilibria, for random Euclidean power graphs. We shall first discuss the Minimum Spanning
Tree, which we shall show to be an equilibrium configuration for the LMCF game, though with poor
global performance. Then, after a series of negative worst-case results, we look to heuristics which
perform well in expectation. The first heuristic we consider, DeltaHeur, guarantees Nash equilibrium
and exhibits good global performance. However, as information locality constraints are quite reasonable
to expect in a wireless sensor network5, we then look to extending DeltaHeur into a local algorithm,
proposing the conveniently named LocalHeur. Local algorithms are algorithms with running time and
informational requirements are independent of n. While the locality of the extension of DeltaHeur into
LocalHeur shall demonstrate similarly good global performance, this is at the expense of loosening
the Nash equilibrium condition. However, nonetheless we shall demonstrate that LocalHeur is close to
equilibrium in multiple ways, both theoretically and experimentally.

Intuitively, the location-based protocol Nearest Forward Progress (NFP) of [22], where each node
forwards to its nearest neighbor that minimizes the distance to the destination, is closest in spirit to
DeltaHeur with the additional advantage of locality, so LocalHeur bears fundamental resemblance to
NFP. Location-aware protocols [19] or position based protocols [20] are protocols proposed for mobile
ad-hoc networks and sensor networks where location information helps a node in adjusting its transmit
power according to the position of its neighbors. In this way, a node can optimize its energy utilization.
But, the cost incurred in this process is the overhead involved in propagating the location information.
This becomes even more cumbersome when the nodes are mobile. Thus the gain in the expenditure of
energy should better this overhead involved which is one of the criteria on which this class of protocols
are evaluated. [20, 21] presents a good survey of such protocols. Out of the various location based

4When the dimension is not specified, we may assume it is 2. When the power is not specified then assume that it is 1.
Note that for powers higher than 1 these graphs do not necessarily obey a metric though they are induced by such.

5excepting only that the destination location is also known.
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protocols the greedy forwarding technique matches our assumption of a network with selfish nodes, as
all nodes forward to one of its in range neighbor and does not worry about the delivery of the packets
[21]. This is similar to our model with an additional constraint that the nodes forward to the nearest
of the in-range neighbor. LocalHeur may be considered an application of NFP to a reverse multi-cast
scenario. By forwarding to the the nearest neighbor that is in the direction of the destination there is not
much deviation from the best-response and also the global performance tends towards optimum. [22]
studies NFP and shows better local throughput and normalized average progress (hops per slot) results
when compared with MFR (Most Forward with Fixed Radius) and MVR (Most Forward with Variable
Radius).

3. Preliminary Results

3.1. Examples and Lower Bounds

We first present examples of Nash equilibria that provide some intuition on the nature of the problem,
as well as lower bounds on PoA and PoS.

Example 3..1 (MST). Given a graph G and destination t, construct a minimum spanning tree T of G
and direct its edges towards t. Note that this forms a Nash equilibrium: If a node u has an incentive
to switch from its current forwarding choice v to a new node v′, forming T ′, then doing so does not
introduce a cycle and w(u, v′) < w(u, v). But then T ′ is also a spanning tree, with total cost less than
that of T , contradicting that T is a MST.

Now consider the MST for the Euclidean “Horseshoe” graph GH of Figure 1 given in [16]. This
example immediately gives a Ω(n) lower bound on PoA with respect to SCstretch, since both a clockwise
and a counterclockwise path to t are Nash equilibria. Further, it can inductively be checked that the best
Nash equilibria for this case with respect to both SCstretch and SCmd is that of Figure 1, thus also giving
a Ω(n) lower bound on PoS for SCstretch. We note the contrast with [16]’s approximate solution for
balancing MST cost and SPT cost which yields a constant bound for GH (by actually connecting the
dots as a horseshoe) but is not a Nash equilibrium. Thus, we have:

Example 3..2 (Horseshoe). The Euclidean “Horseshoe” graph given in [16] yields linear lower bounds
on both PoA and PoS under SCstretch, the optimal Nash being the counter-intuitive one of Figure 1
(unlike [16]’s constant stretch approximation for a non-game-theoretic scenario).

Now consider a Euclidean Spiral graph Gspiral with t at center such as the nodes of Figure 2. The
spiral is formed such that each new node has a distance from the previous node that is greater than
the previous node’s distance to its previous node, and also shorter than the new node’s distance to the
closest neighbor in the inner layer of the spiral. It can be checked that the unique Nash in such a class
of instances is that of directing the Spiral inward towards t as shown in the Figure. Moreover, precise
parameters may be set such that the number of spiral layers is proportional to Ω(nc) for any constant
0 < c < 1, leading to the following (see [23] for details):

Example 3..3 (Spiral). The Euclidean “Spiral” graph of Figure 2 yields a ω(nc) (for any constant c < 1)
lower bound on PoA and PoS under SCmd.
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Figure 1. Euclidean Horseshoe and its Optimal Nash.

Figure 2. Euclidean Spiral.

3.2. Observations on the Structure of Nash Equilibria

It is not a coincidence that the Nash equilibria examples thus far have been trees. We briefly return to
consideration of general Nash, including the mixed case:

Remark 3..4. In any connected graph G, Nash equilibria always exist (guaranteed via MST), and all
Nash equilibria form an acyclic spanning graph with destination t as sink. In particular every pure Nash
equilibria forms a spanning tree directed towards t.

Note that mixed Nash can be viewed as flows in G and that any non-zero flow through a cycle will
have infinite cost. Now, given any Nash-induced sub-graph GS , denote as Tt the maximal acyclic sub-
graph in GS that contains t. Due to connectedness, if there are any cycles in GS , then there is always
some node on some cycle that has a neighbor in Tt, thus giving finite rather than infinite flow weighted
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cost (an infinite flow weighted cost is still infinite), and an incentive to switch. So, there can be no cycles
and Tt spans G. And, due to the single out-degree nature of pure Nash, if GS is a pure Nash then Tt is a
spanning tree.

It is without loss of generality to consider pure Nash equilibria with respect to maxima and minima
of our social cost functions, for the following reason. For any branching out (i.e., a node forwarding in a
mixed manner to more than one neighbor) that occurs in a mixed Nash, the multiple options must have
identical cost to the branching node (and given that, the branching node may distribute the probability
flow in any manner). Any mixed flow achieving some relevant minima or maxima (with respect to PoS

or PoA) can therefore be converted into a directed tree achieving the same such minima or maxima by
continuously shifting the flow to a path that induces the extreme value. Thus, from now on we discuss
Nash trees without loss of generality.

We may further state the following regarding the structure of Nash trees:

Remark 3..5. In a weighted graph G, if i is j’s unique nearest neighbor and j is also i’s unique nearest
neighbor, then we refer to i and j as mutual nearest neighbors. Edges between mutual nearest neighbors
(excluding t) are always used in some direction, in any Nash tree.

To see this, consider a mutual nearest neighbor pair i, j and Nash tree T such that edge (i, j) is not
used in either direction. Since the weight of this edge is minimal amongst all neighbors for both i and j,
the only way it cannot be present in a Nash equilibrium is if it lies on a cycle. But if directing from i to
j would create a cycle, then there must already be a path from j to i in T , and likewise for the opposite
direction. So there must already be a cycle in T , namely from i to j and back to i, contradicting that T
is a Nash tree. Thus, (i, j) must be used in some direction in every Nash tree.

As a corollary, we may also relate this to generating Nash equilibria. Due to the uniqueness condition
in the above definition, any set of mutual nearest neighbor edges must be an independent set. Moreover,
noting that in a complete graph we may always complete a spanning tree after fixing any independent
set of edges as a subgraph, we have the following:

Corollary 3..6. In any complete graph, for every directionality of the set of mutual nearest neighbor
edges (excluding t) there exists a corresponding Nash equilibrium.

Euclidean graphs are especially relevant cases for analysis of the LMCF Game. While we have
already noted that a restriction to Euclidean graphs is rich enough to generate arbitrarily bad examples,
this class also has some further structural properties:

Remark 3..7. For any Nash tree in any 2-dimensional Euclidean power graph of any power6, the in-
coming node degree is at most 6.

The reason is as follows: Consider a set of seven nodes incoming to a vertex v in some Nash tree T .
By a regular hexagonal decomposition into 6 parts, it may be seen that at least one of these incoming
neighbors u must be strictly closer to another incoming neighbor w than to v. Moreover, if by switching
u’s forwarding choice from v to w a cycle was created in the graph, then w and hence w’s own forwarding

6Power does not change nearest neighbor relations.
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choice v must have already had a path to u in T . But since u forwards to v in T , there must already be a
cycle through u in T , contradicting that T is a Nash tree.

Of course, the smallest edge in any graph must consist of a mutual nearest neighbor pair. Exactly how
many we may expect? To address this question, we may say something in the case of random instances
based on results of [17, 18] on random Euclidean graphs of any dimension and on results of [18] on
random link graphs.

Remark 3..8. For random Euclidean power instances of any dimension and any power, and for random
link graphs, at least half the nodes are expected to be involved in some mutual nearest neighbor relation.

Recall that the “bad” Euclidean examples, Figures 1 and 2, each had at most O(1) nodes involved
in a mutual nearest neighbor and a sparse set of possible Nash equilibria. As such situations are highly
unlikely, it is reasonable to hope that greater optimism is warranted for random instances. We discuss
this further in Section 5. and beyond.

4. Hardness of Optimal Nash Equilibria

We now provide hardness results for computing and approximating optimal Nash equilibria.

Theorem 4..1. The optimal Nash equilibrium for the LMCF Game is NP-Hard to approximate to any
constant factor for both the SCmd and SCstretch social cost functions.

Proof. We start by showing that finding the optimal Nash equilibrium for SCmd is NP-hard. Following
arguments from [16], a related construction then shows NP-hardness for SCstretch as well as hardness of
approximation for both social cost functions.

The proof of Theorem 4..1 is based on the 3-SAT reduction of [16] for the minimal-stretch MST
problem, modified with appropriate “choice” gadgets between positive and negative literals of the same
variable. For the purpose of showing NP-Hardness, the constructed graph G is 3-SAT represented as the
union of the clause-literal bipartite graph with edges of length B, along with additional paths E between
the positive and negative literals of each variable, as well as a destination S connected to every literal
by edges of length A ≤ B. The choice gadget for E is simply a symmetric path of edges with small
(meaning even the heaviest edge has small cost) decreasing cost then increasing cost. This replaces
the edges of path E in [16]’s construction. Note that for every positive and negative variable nodes,
say x and x̄, the choice gadget enforces that every Nash tree has either a path from x to x̄ or vice
versa. This is shown in Figure 3. Since each literal is directly connected to S by an edge shorter
than the edge to a clause, the literal with the incoming path from its corresponding choice gadget must
necessarily then forward to S in every Nash tree as well. Moreover, each clause must choose one of its
corresponding literals to forward to. Therefore, there are only two possible kinds of paths from a clause
to the destination depending on the choice gadget’s direction: Zigzagging B → E → A or bypassing
E via B → A. For every pair of literals, directing E from x̄ to x if the corresponding 3-SAT variable
assignment is true and from x to x̄ if it is false, we see that a clause node that directs into its chosen
literal does not zigzag. Since every Nash equilibrium for G uniquely specifies the direction of all paths
E between literals and vice versa, the reduction is clear: The 3-SAT instance is satisfiable if there exists
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a choice of all path directions for E such that no clause zigzags. For sufficiently long B, zigzagging is
the only way to increase the directed diameter, and so NP-hardness for optimal SCmd follows.

For demonstrating NP-hardness for SCstretch as well as hardness of approximation, the construction
is augmented by an additional node R connected to S by a path of length D and to the clause nodes
via edges of length W. By making W sufficiently long and D sufficiently short, we can ensure that
zigzagging is the only way to increase the maximum stretch for any Nash equilibrium, from which
NP-hardness for optimal SCstretch follows. Finally, following the identical method as [16], we can set
edge and path length to induce an arbitrary constant approximation gap, from which NP-hardness of
approximation follows for both social cost functions. We refer the reader to [16] for details and Figure 3
for illustration.

Figure 3. 3-SAT reduction akin to [16] with additional directionality gadgets.

Note that the theorem above also holds under the restriction to complete graphs, by ensuring that any
edges added to this construction are large enough not to be used in any Nash equilibrium.

More specifically, we show that it is hard to compute optimal Nash equilibria even when we restrict
ourselves to the 3-dimensional Euclidean case.

Theorem 4..2. The social cost of the optimal Nash equilibrium for the LMCF Game on 3-dimensional
Euclidean graphs is NP-Hard to compute for both the SCmd and SCstretch social cost functions.

Proof. Here, it suffices to modify the 3-SAT construction G in the previous proof so that it can be
embedded into 3-dimensional Euclidean space. Place the destination node t at the origin. For each
variable xi connect its positive and negative literal via a choice gadget E as in the previous proof, and
place each such connected pair equidistant from neighboring pairs on a sufficiently large circle about S.
This is shown in Figure 4. We introduce a new gadget here as well, which we call the “directionality”
gadget: a sequence of nodes < v0, v1, . . . , vq > such that for each 0 ≤ i < q the nearest neighbor of
vi is uniquely vi+1. Namely, the distances of consecutive points is strictly decreasing and chosen small
enough to guarantee that there are no closer points elsewhere in the remaining construction. Now, for
each literal, draw a directionality gadget from the literal to S along the line connecting those two points,
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identical for every pair. These replace the A-edges in the previous proof, so let us refer to these as A as
well. Note that the choice gadget E is simply two directionality gadgets mirroring each other about the
central shortest edge. Whereas in a Nash equilibrium E has two choices of direction, A has only one
choice of direction: all vi except possibly v0 direct towards vi+1. We retain the caveat that the longest
edge of E is still shorter than its neighboring edges outside of E. Now, for the placement of clauses, and
the paths connecting clauses to literals: Place clause nodes on a sufficiently large sphere about the origin,
sufficiently far apart from each other. For each clause node ci place three identical directionality gadgets
connecting ci to its corresponding literals, replacing the edges B in the previous construction. Note that
this can certainly be accomplished in 3-dimensional space without any two paths B coming too close by
choosing the sufficiently large sphere. Moreover, these gadgets B can be made identical in total length
as well by elongating short lines by a curve. This completes the specifications for the construction of the
embedding: let us call it G3D. What remains is this. Every Nash equilibrium for the LMCF game on
G3D is uniquely determined by the choice of literal to which ci connects via a B-gadget and the choice
of direction for each E gadget. Again note: The maximum possible stretch factor and weighted-hop-
distance to S in a Nash equilibrium are achieved by a zigzagging of B → E → A. Identically to the
previous proof, such zigzagging is only necessary for unsatisfiable 3-SAT instances. The NP-Hardness
then follows. We refer the reader to Figure 4 for illustration.

Figure 4. 3-SAT reduction embedded in 3-dimensional Euclidian space.

5. Heuristics

Given the hardness results, we seek to find an intuitive heuristic to compute Nash trees for LMCF
with low Social Cost. First, we present a meta-heuristic, LMHeur, to compute general Nash equilibria
for the LMCF Game. The main idea behind the meta-heuristic is that since equilibria are directed trees,
for any Nash tree there exists a forwarding order such that, maintaining a forest of directed edges for
nodes already chosen, the next chosen node forwards to its nearest neighbor that does not introduce a
cycle into the forest. The choice of forwarding order may be dictated by whichever global cost function
we wish to optimize, or which kind of Nash we are looking for.
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As we have proposed SCstretch and SCmd as reasonable social cost functions to consider for the
LMCF Game, we propose the DeltaHeur, a member of the LMHeur class, to compute good Nash trees.
The ordering priority for DeltaHeur is based on maximal progress towards shortest path. A priority
queue is kept holding the nodes that have yet to forward, sorted by the difference between the candidate
node’s shortest path distance to the destination and its available nearest neighbor’s shortest path distance
to the destination (“available” means not introducing a cycle within the current forest). The description
is shown in Algorithm 5..1. It is straightforward to show in the Euclidean case that the ordering induced
by the DeltaHeur corresponds exactly to a “maximum projection” heuristic, which we call ProjHeur,
where the projection in question is that of the vector from the candidate node to its available nearest
neighbor projected onto the vector from the candidate node to the destination t.

Algorithm 5..1 DeltaHeur
Require: Position of all the nodes is known to all other nodes; for given nodes (numnodes),
numnodes ̸= 0

// Q: Priority Queue initially contains indices from 1 to numnodes
while Q is not empty do

for all i = 1 to numnodes do
for all j = 1 to numnodes-1 do

if (cyclecheck(i, Nbrs[i].j) ̸= 1) then
// cyclecheck(i,j) returns 1 if Node i forwarding to Node j forms a cycle
// Nbrs[i].j refers to jth nearest neighbor of i
i.cnn → j // i.cnn refers to the current nearest neighbor of i that does not create a cycle
break

end if
end for

end for
for all i = 1 to numnodes do

i.delta=d2d(i)-d2d(i.cnn) // d2d refers to the shortest distance to destination
update(Q) // Q is updated with the node indices(i) in decreasing order of delta

end for
[Q.top()].pointTo → Nbrs[Q.top()].cnn // pointTo refers to the node to which the node with maxi-
mum delta forwards to
Q.pop()

end while

The extension of ProjHeur to a local algorithm, LocalHeur, is simply that each node forwards to
its nearest neighbor that is closer in the Euclidean space to the destination than itself (thus also being
in the direction of the destination). The description is shown in Algorithm 5..2. Trivially, any such
configuration is guaranteed to be cycle-free without need of an explicit cycle check, nor computation
of shortest paths, since Euclidean metrics are used. However, unlike ProjHeur, LocalHeur does not
guarantee Nash equilibrium. We provide results later on closeness of LocalHeur to Nash equilibrium.
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Note furthermore, that while the Euclidean power graph of power p = 2 is not a metric graph, it is a
closely bounded approximation of the underlying Euclidean metric, particularly in random instances.

Algorithm 5..2 LocalHeur
Require: Position of the destination is known to all the nodes; each node knows the position of its

one-hop neighbors,numnodes ̸= 0;∨i, numnbrs(i) ≥ 1

for all i = 1 to numnodes do
// numnbrs(i) is the total number of neighbors of i
for all j = 1 to numnbrs(i) do

// dist(i,j)computes the distance between Node i and j
// dest refers to the destination node
// Nbrs[i].j refers to jth nearest neighbor of i
if (dist(i, dest) - dist(Nbrs[i].j, dest) ≥ 0) then

i.pointTo → Nbrs[i].j // pointTo refers to the node to which i forwards to
break

end if
end for

end for

6. Theoretical Analysis of Expected Social Costs on Random Graphs

While we have given worst-case lower bounds on PoA and PoS, it is also of practical interest to
consider the expected values of these quantities for classes of random graphs. Here we discuss the case
of random Euclidean instances, arguing that based on the structure of the MST, PoA is likely to be ω(1),
whereas based on the behavior of DeltaHeur, PoS may be Θ(1).

The argument for PoA (at least under SCstretch) is as follows. Consider the MST on nodes placed
uniformly at random in a d-dimensional unit hypercube. Now consider a (d−1)-dimensional hyperplane
that cuts one of the edges incident on t in the spanning tree, but none of the others. Because of the
uniform density of nodes, we expect that this (curved) hyperplane will pass between many pairs of
nodes separated by distance Θ(n−1/d), i.e., the typical distance between a node and its close neighbors.
The hyperplane continues to the boundaries of the hypercube, and so some of these pairs of nodes are
likely to be at constant distance from t. However, since the nodes in the pair are on opposite sides of the
hyperplane, the shortest MST path between them must pass through the cut edge, and thus be of constant
length. While we are concerned with the maximum stretch factor of a node to t rather than between two
arbitrary nodes on the graph, note that in the random case, t is in fact equally likely to be any of the
nodes in the MST. This suggests the maximum stretch factor could be Θ(n1/d), so PoA would then be
Ω(n1/d) under SCstretch. The argument is qualitatively similar for Euclidean power graphs.

Now consider the behavior of DeltaHeur in constructing Nash equilibria on the same random Eu-
clidean instances. Not all directed edges in the Nash tree will point towards t, but we expect there to be a
distinct positive bias in favor of this: it is easy to show, for instance, that the algorithm orients all mutual
nearest neighbors in the direction of t. Given that mutual nearest neighbors pairs are a constant fraction
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of edges and their angles of orientation are uniform at random, at each step the expected progress to-
wards destination (the criterion on which DeltaHeur ranks edge) is likely to be a constant fraction of the
edge length. The typical distance on the Nash tree from a node to t is then a constant, giving an average
(not maximum) social cost of Θ(1). Moreover, if it turns out that the random variables representing
the progress towards destination along a path to t are only weakly correlated, the distribution of these
distances will be close to a Gaussian with constant mean and variance Θ(n−1/d). The maximum of n
such Gaussian variables has mean Θ(α +

√
log nn−1/d) [24] where α is a constant independent of d,

suggesting that this too might be the expected maximum distance. A very similar argument holds for
maximum stretch factor, leading to the possible scenario that PoS is Θ(1).

Finally, we note that the above argument bounding the expected stretch and diameter of DeltaHeur
holds strongly for LocalHeur when d = 2, p = 1 due to the clear satisfaction of the assumption of
directed edges pointing towards t with independent forwards. For the case of d = p = 2, we note that
the result is similar due to the approximation of the underlying metric.

7. Theoretical Bounds on Closeness to Equilibrium for LocalHeur

In this section, we prove bounds on the closeness of the LocalHeur configurations to the Nash equi-
librium condition. The main theorems concern the non-deviation from equilibrium for a majority of
the nodes and the worst case approximation to a Nash equilibrium. When referring to random Eu-
clidean instances, we restrict our consideration only to points distributed uniformly at random in the
two-dimensional unit square.

Theorem 7..1. [Majority Non-Deviation] In any configuration induced by LocalHeur on a random Eu-
clidean instance, with high probability at least half of the players are playing a best response.

Theorem 7..2. [Approximation to Nash] In any configuration induced by LocalHeur on a random Eu-
clidean instance, with high probability the worst player’s cost is within O(

√
log n) of the cost of his

best response.

Before proceeding to prove the theorems, we introduce some notational convenience: Let H(x) de-
note the half-plane through x defined by all points y such that vector < x, y > has a positive projection
onto the vector < x, t >, for destination t. Let nni(x) denote the ith nearest neighbor of x, and let
nni,H(x) for function H denote the ith nearest neighbor of x restricted to half-plane H(x) 7. Note that,
except within a negligible constant neighborhood of the destination t for which relevant results hold any-
way, nn1,H(x) is with high probability the neighbor to which x forwards under the LocalHeur algorithm.
Thus w.l.o.g. we denote LocalHeur(x) = nn1,H(x).

Finally to make appropriate game-theoretic analysis, let BR(x) denote the set of points y for which
the act of x forwarding to y would constitute a best response for x given the current configuration of all
other players. Since BR(x) will be a singleton with probability 1 for random Euclidean instances, we
refer to the best response as a single point w.l.o.g.. Note that player x is playing a best response iff x is
forwarding to his nearest neighbor which does not already have a path to x (in which case the forwarding
would induce a cycle, giving infinite cost). Now we proceed to prove our theorems:

7Since the border of the unit square has asymptotically negligible effect on nearest neighbor relations, we ignore border
effects w.l.o.g.
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Proof of Theorem 7..1. It suffices to show that, for any player x, the probability that x is playing a best
response is at least 1

2
+ c for some constant c > 0, as the probability distribution of players playing

best response is then bounded below by an i.i.d. binomial distribution with p = 1
2
+ c for which the

corresponding result on biased coin flips inducing majority w.h.p. is well known8. Thus, we proceed to
show that for any player x, which is of course a random position in our Euclidean space, the probability
that x is playing a best response is at least 5

8
.

Clearly, if nn1(x) ∈ H(x) then x is trivially playing a best response. Since there is no bias induced
by either half-plane, we thus have that Pr[LocalHeur(x) = BR(x)] ≥ 1

2
. What remains now is to

demonstrate a constant bias towards choosing a best response. This is accomplished by noting just
another disjoint situation, namely the situation that although nn1(x) /∈ H(x), that nn2(x) ∈ H(x) and
x = nn1(nn1(x)). If we may show that the probability of this situation is bounded below by a constant
c > 0 then we are done, and in particular we demonstrate that the probability of this situation is bounded
below by 1

8
. For convenience, let us denote the relevant events as follows:

• Let A denote the event that nn2(x) ∈ H(x).

• Let B denote the event that nn1(x) /∈ H(x).

• Let C denote the event that x = nn1(nn1(x)).

Now we show that Pr[A ∧B ∧ C] ≥ 1
8
:

First note that Pr[A|B ∧C] > 1
2

as the events B ∧C serve to mark out a slightly larger area of H(x)

from consideration than the area marked out from consideration within H(x). Namely, two areas become
impossible for nn2(x) to lie within, one area being the circle centered at x with radius dist(x, nn1(x)),
and the second area (not disjoint) being the circle centered at nn1(x) with same radius. The first circle
blots out from consideration equal sizes areas in H(x) and H(x), but the second circle lies wholly
within H(x).

Secondly, note that event C, a reciprocity or mutuality event, is entirely independent of event B.
Thus, Pr[B ∧ C] = Pr[B]Pr[C]. As mentioned previously, Pr[B] = Pr[B] = 1

2
. It can be shown that

Pr[C] ≥ 1
2

. Intuitively if points are assumed to be uniformly distributed in a n-dimensional Eucledian
space, their reciprocity relationship follows a geometric distribution whose expectation cannot exceed
2. The reader is referred to [17, 18] for a detailed understanding. Thus, combining via Bayes’ Rule, we
obtain that Pr[A ∧ B ∧ C] = Pr[A|B ∧ C]Pr[B ∧ C] = Pr[A|B ∧ C]Pr[B]Pr[C] ≥ 1

23
completing

our proof.

Proof of Theorem 7..2. Let x be a player. From [25] it follows that the distance dist(x, nn1(x)) =

Θ( 1√
n
) with high probability 9, yielding a lower bound on the cost of the best response. Thus, if we

demonstrate that dist(nn1,H(x), x) = O(
√
logn√
n

) w.h.p., then we are done: For some constant c, consider

a radius r = c
√

logn
πn

circle of area A = 2 logn
n

about point x. We complete the proof by showing that the

8Note that the dependence amongst the player variables actually only acts in the direction of increasing the bias towards
playing best response.

9In fact the result is general for nnk(x) with any constant k.
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probability Prempty that the intersection of this area with H(x) is empty (excluding x) is vanishing:

Prempty = (1− A
2
)n−1 ≈ (1− logn

n
)n

= ((1− logn
n

)
n

logn )logn

≈ e− logn = 1
n
→ 0

Lastly we derive corollaries to the more general case of random Euclidean power graphs, as we
especially care to model such graphs of power p = 2 for more realistic wireless applications. From the
above proofs and the observation that relative proximity relation remain unchanged upon powering the
distance, as well as the result from [25] on moments of the nearest neighbor distance distributions, the
following corollaries immediately follow:

Corollary 7..3 (following from Thm. 7..1). For any power p, in any configuration induced by LocalHeur
on a random Euclidean power p instance, with high probability at least half of the players are playing a
best response.

Corollary 7..4 (following from Thm. 7..2). For any power p, in any configuration induced by Local-
Heur on a random Euclidean power p instance, with high probability the worst player’s cost is within
O((log n)

p
2 ) of the cost of his best response.

8. Simulations on Social Cost and Closeness to Equilibrium

8.1. Setup

Euclidean power graphs of size n and powers p=1,2 were generated by uniformly distributing n nodes
on a 560 × 560 grid. n was varied from 30 to 1,000 in steps of 10 thus varying the density of nodes in the
grid.For the random link case n was varied from 30 to 350. In the computation of worst case closeness to
best response, a diminishing fraction (square root of the sample size) of maximum and minimum outliers
were removed. The results thus obtained are shown in Figures 5–9 and Table 1.

8.2. Results

From Figure 5 we can infer that prices in terms of both stretch and diameter are asymptotically in-
creasing in case of MST while they are concentrated about small constants for DeltaHeur and LocalHeur.
The stretch results of LocalHeur outperforms DeltaHeur almost always by an additive factor of 2. The
cost of achieving this is minimal, considering that in all cases only at most 10 percent of the nodes deviate
from their best-response (Table 1) and the deviation from best-response is only about 3 percent, which
can be inferred by the constant shown in the average closeness to equilibrium plot (Figure 6). This is
consistent with Theorem 7..1. For power p = 2, the performance becomes comparable to DeltaHeur, but
still there are only 10 percent of nodes deviating, and the worst case deviation is a very slowly growing
function consistent with the theoretical upper-bound from Theorem 7..2. An explanation for compara-
ble stretch and diameter results upon powering the distance is that SPT tends to choose shorter edges
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at higher powers [26] thus tending towards closer neighbor, while the choice of the next forwarding
neighbor in the case of LocalHeur remains the same for all powers. For the random link models under
both social cost functions, both DeltaHeur and MST prices appear growing, though for the stretch-based
pricing (Figure 8), again MST appears growing asymptotically faster, and there is too much variance
in the DeltaHeur plot to make further inferences. The primary consistent observation applying here is
that the DeltaHeur is still an improvement over MST (whether by a constant or asymptotically growing
factor), and that the md-prices are still quite small.

Figure 5. Plot of stretch and diameter for the MST, DeltaHeur and LocalHeur case when
power = 1.
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Figure 6. Plot of average and worst-case closeness to equilibrium for LocalHeur when
power = 1.
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Figure 7. Plot of stretch and diameter for the MST,DeltaHeur and LocalHeur case when
power = 2.
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Figure 8. Plot of stretch and diameter for the MST and DeltaHeur scheme with random
link costs.
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Figure 9. Plot of average closeness to equilibrium and average worst-case closeness to
equilibrium for LocalHeur when power = 2.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 100  200  300  400  500  600  700  800  900  1000

A
ve

ra
ge

 C
lo

se
ne

ss
 to

 E
qu

ili
br

iu
m

Number of nodes

Plot of Avg Closeness(Power=2)

Closeness to Equilibrium

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100  200  300  400  500  600  700  800  900  1000

A
ve

ra
ge

 W
or

st
 C

as
e 

C
lo

se
ne

ss
 to

 E
qu

ili
br

iu
m

Number of nodes

Plot of Avg Worst Case Closeness(Power=2)

WorstCase Closeness



Algorithms 2009, 2 1321

Table 1. Count of deviating nodes.

Worst Case no. of nodes deviating from best-response
No of nodes power = 1 power = 2
100 10 8
500 62 59
1,000 98 103

9. NS-2 Simulations

9.1. Simulation Parameters

The LocalHeur and the MST scheme were implemented and comparatively studied using the ns-2
simulator [27]. A realistic wireless environment is modelled using the parameters specified in [28].
Nodes were uniformly distributed on a 1,500 m by 300m grid. Instances where the node density has to
be varied were obtained by changing the number of nodes (50,100,250) in the above grid and instances
where traffic-load has to be varied were obtained by fixing the sending rate at 4 packets per second and
varying the number of sources (1,10,20,30). To nullify the effects of congestion, CBR traffic was used
and the packet size was kept as low as 64 bytes. Each node adapts its transmit power after the next-hop
forwarding decision is made and the receiver sensitivity of all the nodes are fixed. IEEE 802.11 was the
underlying MAC, using the Distributed Coordination Function (DCF). In our energy model, to eliminate
the MAC effects, we do not consider the energy expenditure for idle listening. Each simulation was
carried for 150 s and averaged over 10 runs for different node distributions and connectivity patterns.

9.2. Analysis

Figures 10–13 presents the results obtained. From Figure 12 it can be observed that the MST requires
almost 50 percent more energy than LocalHeur for a single traffic source. As consistent with bounds on
stretch and diameter, MST has a longer path length and more number of hops and thus greater is the cost
of per packet transmission. LocalHeur outperforms MST for 20 sources too but becomes comparable to
MST for 30 sources, where the expected starting time between sources is less than 2.5 seconds, given
that CBR traffic is turned on randomly in the first 50 seconds of the simulation. These results are for
a packet size of 64 bytes at a rate of 4 packets per second. Thus it can be observed that under the
assumption of selfish nodes, for events that has to be sensed below this expected time, Localheur can
give a considerable energy gain compared to MST. For more frequent sensing of data, the LocalHeur
can still provide a good end-to-end delay performance and a better packet delivery ratio with its energy
performance tending towards the MST in the worst case. Also having 30 sources transmitting at less
than 2.5 s interval between them will cause a significant MAC level contention especially when there are
many sources lying within the interference range of the currently transmitting source. Even though this
level of contention is bounded by a maximum degree of 6 for both MST and the heuristics as we noted of
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any Euclidean Nash tree, 802.11 performance is considerably influenced under such levels of contention
especially when there are multiple hops to destination [29]. This makes a considerable impact both on
energy performance as well as the packet delivery ratio considering the fact that for every failed packet
there were 7 attempts to retransmit a packet. Thus the effects of MAC are not fully eliminated at high
contention, even though we eliminated the effects of idle listening.

The forwarding decisions of both LocalHeur and MST are very simple with each node just deciding
on the next-hop neighbor thus eliminating the cost of having complex routing tables at the intermediate
nodes and also very low route computation costs. LocalHeur will have an initial overhead associated with
the discovery of the local neighbors which in turn is very much insignificant compared to the costs of
cycle check and global neighbor discovery phase of MST. Thus it can be stated that under the constraints
of selfish behavior, LocalHeur shows a good energy performance and a better packet delivery ratio
compared with the MST scheme under moderate levels of contention, thus providing a global optimal
performance with a minimum deviation from equilibrium condition.

Figure 10. Plot of average hopcount to destination for MST and LocalHeur for
50,100,250 nodes.
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Figure 11. Plot of PacketDelivery ratio for MST and LocalHeur for 100 nodes and
1,10,20,30 sources.
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Figure 12. Plot of Average Energy Utilization per node (at the end of 150s) for MST and
LocalHeur for 100 nodes and 1,10,20,30 sources.
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Figure 13. Plot of Average End-to-end delay per node for MST and LocalHeur for
50,100,250 nodes and 1 source.
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10. Conclusion

We have considered the LMCF model of all-to-one (reverse multicast) selfish routing in the absence
of a payment scheme in wireless sensor networks, where a natural model for cost is the power required
to forward. Whereas each node requires a path to the destination, it does not care how long that path is,
so long as its own individual or local forwarding cost is minimized, yielding two related social objec-
tives of finding topologies that minimize: (i) the maximum stretch factor, and (ii) the directed weighted
diameter. We proved that Nash equilibria always exist for LMCF, in particular the directed MST always
being one, and we analyzed price of anarchy and the price of stability (PoS) of this game restricted to
wireless scenarios.

For the maximum stretch factor we present a Ω(n) worst-case bound on PoA and PoS, and for
the directed weighted diameter we have presented a ω(nc) worst-case bound on PoA and PoS for
all c < 1, even when restricted to Euclidean instances. We proved hardness of computing the opti-
mal Nash equilibrium in three-dimensional Euclidean instances as well as approximation hardness in
arbitrary instances.

Given the negative worst case results, we presented heuristics that are fully or approximately close
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to Nash equilibria while also approximating the optimum social cost with good likelihood in relevant
random instances. The first heuristic, DeltaHeur guarantees Nash equilibria and is extendable to gen-
eral graphs. However, as the issue of local computation (or computation with local information) may
be important under many wireless scenarios, we propose a modification of DeltaHeur that is locally
computable, LocalHeur, which we prove approximates Nash equilibrium with high probability: at least
half of the players are provably playing a best response with high probability, while simulation results
demonstrate that majority of the players are playing a best response and the average deviation ratio from
a best response is within a decimal point of 1. Furthermore, the player deviating most from his best
response is provably still within O(log n) of the cost of his best response with high probability, while
simulation results support a much smaller maximum deviation from the best response. LocalHeur lies
within the class of location based routing methods with particular similarity to the Nearest Forward
Progress algorithm [22] though from the perspective of game-theoretic reverse multicast routing.

We analyzed, via simulations and probabilistic arguments, the social costs given by the heuristics
and by the MST on random Euclidean power instances, and found that both DeltaHeur and LocalHeur
significantly outperform MST. In particular, both heuristics proposed exhibit concentration about small
constants to the global optimum experimentally. These results suggest that for random Euclidean power
instances, the expected PoA is ω(1) while the expected PoS is Θ(1).
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