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Abstract

We discuss the problem of optimally “finishing” a partial-

ly sequenced segment of DNA strand. While a simplified

model may be solved to optimality by a greedy algorithm,

adding more realistic features appears to make the problem

computationally hard. We propose an Integer Linear Pro-

gramming formulation that places it in the context of more

general coverage problems, in the hope that this will pro-

vide further insight into the solvability of this biologically

important application.

1 Background

DNA sequencing experiments are typically performed in
two stages: shotgun sequencing and walking . Shotgun
sequencing may be thought of as a stochastic process,
where many short subintervals at random locations on a
DNA strand are sequenced. A cost CS is associated with
each subinterval sequenced. Walking is a deterministic
finishing process, where regions insufficiently covered in
the shotgun process may be sequenced. A higher cost
CW is associated with each subinterval sequenced in
this way. Note that both procedures sequence discrete
subintervals, which may all be taken to have equal (unit)
length.

Current standards in the Human Genome Project
require every position on the DNA strand to be se-
quenced at least 3 times to insure minimum reliability
of results. Any moderate amount of shotgun sequencing
will tend to leave some regions of the DNA strand insuf-
ficiently sequenced according to this criterion; once the
locations of these regions have been established, they
must be finished by walking. Since shotgun positions
are random, these regions are generally of non-integer
length, whereas the walking procedure sequences one u-
nit length at a time. It is then a non-trivial problem
to decide exactly where to place the walks in order to
meet the required criterion with minimal redundancy.
Furthermore, in spite of its importance to the genome
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project’s ambitious timetable, this problem does not ap-
pear to have been addressed yet in the literature.

2 Simplified Model

Consider a typical instance of shotgun coverage, as
depicted in Figure 1. A single walk, from any starting
position, has the effect of increasing the profile height
by one, over one unit length. The goal is to fill the
deficient regions in the profile, i.e., the areas with
height less than 3, using as few walks as possible. A
simple greedy algorithm for doing this might go as
follows: proceed from one end of the profile to the
other (left-to-right or right-to-left), and whenever a
deficiency is found, perform a walk as many times as
necessary at that position to eliminate the deficiency.
The profile height will thus be increased, over one unit
length, by the number of times a walk is performed
there. Interestingly, it may be shown that this greedy
algorithm — as well as other variations on it — gives
an optimal solution.

0

1

2

3

4

Position

sequenced
# of times

1 unit
length

Figure 1: Coverage profile, showing the number of times
positions along the DNA strand have been sequenced
in shotgun sequencing. Dashed line shows new profile
height after one walk.

3 General Model

Now modify the original statement of the problem so as
to make it more faithful to experimental reality, though
also more complex. When walks are performed multiple
times at a given position, let only the first walk cost

1



2

CW ; all subsequent walks at that position may take
advantage of laboratory material already prepared for
the first one, and have a marginal cost that is in fact
close to CS . A p-fold multiple walk (increasing the
profile by height p over a unit length) may now be taken
to have cost CW +(p−1)CS , for p ≥ 1. It might thus be
profitable to perform multiple walks over a given region,
even when this results in a greater total number of walks
than would otherwise be necessary.

Consider the problem in the following terms. Define
α = (CW −CS)/CS , so that the cost of a p-fold multiple
walk is CS(p + α) for p ≥ 1. When p = 0, however,
the cost is 0, so the presence of α 6= 0 in the general
model introduces a non-linearity. The generic greedy
algorithms used on the simplified model are no longer
optimal: the best we can say is that they give, in linear
time, a solution whose cost is within a constant factor
(1 + α) times the optimum. One could also propose
various greedy-based heuristics to find near-optimal
solutions, such as scanning from one end of the profile to
the other, and over each unit-length interval performing
a p-fold multiple walk, where p is the greatest deficiency
found anywhere in that interval. A more structured
approach, though, is to rephrase the non-linear problem
so that it can in fact be given by an Integer Linear
Programming formulation.

4 ILP Formulation

The first observation to make is that there is only a
finite number of discrete locations at which the initial
coverage profile changes, equal to the number of shotgun
subintervals used in the instance. As all walks are of one
unit length, it is sufficient to consider positions on the
strand that correspond to these locations plus or minus
integer values. We are given:

α = ratio of fixed to incremental walking cost
m = length of DNA strand
n = # of shotgun subintervals (of unit length)
di = deficiency at position i, i = 1, . . . ,mn

Now consider all subintervals that could be used in
walking, i.e., subintervals of unit length beginning at
position i, i = 1, . . . ,mn. Each of these subintervals
represents the set of positions [i, i + n). Generate 3
identical copies of each set, and define:

S1, S2, S3 = subintervals beginning at position 1
S4, S5, S6 = subintervals beginning at position 2

and so on, up to SN (where N = 3mn):

SN−2, SN−1, SN = subintervals beginning at
position mn

Define a weight wi for each subinterval Si, such
that:

w1 = 1, w2 = 2, w3 = 3

w4 = 1, w5 = 2, w6 = 3

...

wN−2 = 1, wN−1 = 2, wN = 3.

Let subinterval Si with weight wi correspond to a wi-
fold multiple walk at position i. Let xi = 1 if such a
walk is performed, and xi = 0 if it is not.

The optimization problem then reduces to the fol-
lowing canonical form ILP. Minimize

N∑
i=1

(α+ wi)xi(4.1)

subject to the constraint that ∀j,∑
i: j∈Si

wixi ≥ dj and xj ∈ {0, 1}.(4.2)

Note that while in principle this allows us to choose
more than one copy of a subinterval at a given position,
the minimization of (4.1) will necessarily favor instead
a single copy with equivalently higher weight.

5 Discussion

Efficient DNA sequencing is an important problem in
biology. We have seen how simple machinery from com-
binatorial optimization can profitably be adapted to this
application. While the general model we have discussed
(α > 0) appears to be computationally hard, it is not at
present certain whether this is really the case. The ques-
tion of how the nature of an optimal algorithm changes
with increasing α remains open. The ILP formulation
introduces conceptual simplicity to the problem, how-
ever, and makes us more hopeful that its computational
complexity can be determined. Finally, it provides a
framework for approaching the problem when modified
to take account of other experimental realities, such as
the double-stranded nature of DNA and a requirement
that both of these strands be sequenced at least once at
each position.
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