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Finite Size and Dimensional Dependence in the Euclidean Traveling Salesman Problem
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We consider the Euclidean traveling salesman problemMocities randomly distributed in the
unit d-dimensional hypercube, and investigate the finite size scaling of the mean optimal tour
length Lg. With toroidal boundary conditions we find, motivated by a remarkable universality in
the kth nearest neighbor distribution, thadt;(d = 2) = (0.7120 = 0.0002) N'/2[1 + O(1/N)] and
Lg(d = 3) = (0.6979 = 0.0002) N¥3*[1 + O(1/N)]. We then consider a mean-field approach in the
limit N — o which we find to be a good approximation (the error being less than 2.18%=atl, 2,
and 3), and which suggests that(d) = N'~V4./d/27e (wd)/*[1 + O(1/d)] at larged.

PACS numbers: 02.60.Pn, 02.70.Lq, 64.60.Cn

The traveling salesman problem (TSP) is one of thdunction of dimension. Comparing mean-field results with
best known combinatorial optimization problems. It is EuclideanN — o results at lowd shows that mean field
NP complete (suggesting that no algorithm exists fordoes considerably better than previously expected, and
solving the problem in polynomial time), and it serves assuggests that in quite natural unifs; can be written as a
a fertile ground for analytical and numerical approaches tpower series in/d.
optimization problems in general. Itis also one of the few Euclidean model: Finite size scaling/ = 2).—We
optimization problems that have been studied extensivelgtart with the case ofN cities distributed randomly
in the context of statistical mechanics. and uniformly in a unit square. Numerous heuristic

The TSP, as we consider it, is as follows: Givdn approaches have been developed to find near-optimal
points (“cities”) in a space, the problem is to find the TSP tours given a particular configuration (“instance”) of
length of the shortest closed path (“tour”) going throughcities. For our purposes, the most convenient methods are
each city exactly once. Two particular forms of the prob-local-optimization heuristics such as the Lin-Kernighan
lem have been investigated in depth. The first, which haéLK) [4] and the chained local optimization (CLO) [5]
attracted the most attention among computer scientists aradgorithms. With these algorithms, repeated runs on a
mathematicians, is the Euclidean TSP: Thiecities are given instance using different random starts produce the
randomly distributed in a/-dimensional hypercube and optimal tour with increasing probability.
the distances between cities are given by the Euclidean It has been shown [6] that in the largé limit the
metric. The second, which has been of particular interestptimal tour lengthfor a given instancely is self-
within the statistical physics community, is the randomaveraging up to a scaling factor
link TSP: The lengthd;; separating cities and j are i
taken as independent random variables with a given dis- lim 7_E = BEg,

et Nooo N1-1/d
tribution p (7).

It has been noted by Mézard and Parisi [1] that thewhere convergence to the instance-indepengeris with
random link model, withp (1) appropriately chosen, maps probability 1 (in the ensemble of instances with randomly
onto the Euclidean model if correlations between three odistributed cities). Much past work has concentrated on
more distances are neglected (no triangle inequality, fooptimizing single instances at largé(see [5,7,8]). Here,
instance). This suggests that the random link TSP can beowever, our concern is to calculag: along with an
considered as a mean-field approximation to the Euclideaestimate of statistical error, and so instead we average
case, and perhaps that this approximation becomes examter a large number of instance. There is necessarily
in the limitd — oo. a tradeoff in the choice ofN: At small N alone we

Our intention in this Letter is twofold. First, for cannot confidently predict the finite size scaling behavior,
the Euclidean TSP we investigate finite size correctionsvhereas at larg&v the large amount of computing time
to the mean optimal tour lengtliz, in the largeN  necessary for each optimization sharply limits the number
(“thermodynamic”) limit. To our knowledge there has of instances we can optimize reliably, and increases the
been no prior work on this subject, in spite of a greatstatistical error. We therefore choose several small values
deal of interest inLg in the thermodynamic limit itself. of N (N = 12 throughN = 17) where we optimize using
Second, we explore the dimensional dependencéof LK, and two larger valuesN = 30 andN = 100) where
using a mean-field approach (the random link TSP inve optimize using CLO.
conjunction with the “cavity method” [1,2]). We extend Given Lg(N) at different values ofV, then, we wish
the work of Krauth and Mézard [3] to find the mean-to extrapolate and extract the limitz, as well as finite
field optimum Ly in the thermodynamic limit, as a size corrections. In order to eliminate the effects of
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surface terms, we use periodic boundary conditions ir 0.7125
the Euclidean distance metric. An indication of the size
dependence to be expected Ig(N) may be found i
by looking at the distanceD, between kth nearest '— 0.7105
neighbors, averaged over the ensemble of instances. +
direct calculations shows that, givew cities distributed & I
randomly and uniformly over thei/-dimensional unit % 0.7085
hypercube (with periodic boundary conditions), + [

N —1 77.d/2 k N..':. -
Di(N,d) <k B 1>(N k)d[ T2 + 1)} = 0.7065 i

1/2 e 742 N—k—1 \Lu [

<[, @2+ 1>} aro 07045
where exponentially small corrections i have been [
neglected. 07025 b i g o 01

Recognizing this integral (up to a change of variable 0 0.02 004 006 0.08 0.1

and further exponentially small correctionsif) as a beta
function, we find that 1/N
1/d FIG. 1. Finite size dependence of rescaled Euclidean 2D
G Td/2 + )7 Tk + 1/d) . TSP optimum. Best fity? = 5.48) is given byLz/N'?[1 +
LN + 1/d) NEd (k) 1/8N) + ---] = 0.7120(1 — 0.0171/N — 1.048/N?). Error
1) bars represent statistical errors.

Di(N,d) ~

Notice that there is a complete separation here of the
N dependence and the dependence. This is indeed in twenty random starts. These methods introduce a
a surprising universality: It means that up to exponensystematic error, because they do not always find the
tially small correctionsall kth nearest neighbor mean true optimum; we estimated this error by performing a
distances have exactly the same scaling law jmamely, large number of runs on a few instances and measuring
I'(N)/T(N + 1/d). It might be expected, then, that the the average expected error (weighted by the probability
length of a TSP tour consisting @/ links would have of making that error when choosing the best out of
large N scaling behavior ten random starts). In all cases, we verified that the
T(N) 1 systemgtic error stayed under 10% of the statistical error
m = shown in the error bars. o _
In order to reduce the statistical noise further, we used
1/d — 1/d? 1 the following variance reduction method: Recognizing
N 0(%)} that Lz(N) = N(D; + D,)/2 is a lower bound on the

. . L tour length (each city is at best connected to its first-
where the right-hand side follows from Stirling’s formula. : ; .
. . and second-nearest neighbors), write the estimatok for
In fact, due to correlations betwednand N in the

optimal tour, this is not quite the case. Figure 1 shows$™> {Lg = ALp) + ALp. Lr andLy denotes valuesor

our results forL» divided by the scaling quantity above. & particular instancethe angular brackets represent the
atd = 2° We firfd that this ?/s 0 a oodgfi? itselfya owe} average over instances sample, and the ensemble average
o . " 9 - P Lp can be calculated analytically [see Eq. (1)) is a
series in1/N, albeit one with a small first-order term. hich di e h . ¢
The asymptotiaV — o value is 8z = 0.7120 = 0.0002, parameter which we adjust to minimize the variance o

where the error is obtained on the basis)of analysis. our new estimator. In practice, optimal valuesiofA ~

. ) . 0.75) enabled us to reduce the error by over 60%. Other
This result is, to our knowledge, the most precise to date_ - ;

; . g variance reduction methods can also be used [9], but ours
for the Euclidean TSP in the thermodynamic limit.

The methods by which we obtained the results in Fig. 1has the advantage of introducing no new systematic error.
. S Mean-field method—We now turn our attention to the

are themselves of some importance. For runs OIOt'mlzeﬁhean-field approximation, based on the random link TSP

by LK (N = 12 through N = 17), we averaged over PP ! ’

the results of 250 000 instances, where for each instanqlz\éather than havingV cities distributed randomly in a

: : ercube, we now have lengths between cities and
we took the best (lowest) optimum found in ten random 1Y P . s .
starts (ten different runs). Fof = 30 we averaged over Jj (I =i<j=N) distributed asindependentrandom

10000 instances, taking for each one the best optimu%:kr;abl(el? f:)cct;)éd![?]g toroal;acbe”riialn diglj{g'&?&?ﬁg' Ie\rllvihs
found by CLO (ten Monte Carlo iterations per run) in P P y 9

five random starts. Fow = 100 we averaged over between cities in thel-dimensional Euclidean problem,

6000 instances, taking for each one the best optimun'wn the absence of finite size effects:

found by CLO (ten Monte Carlo iterations per run) p(l) = da??197V)T(d/2 + 1).

X[l-ﬂ-
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This establishes a mapping in the thermodynamic limifTABLE I. Comparison of Euclidean and mean-field TSP

between the random link TSP and the Euclidean TSPoptima (rescaled) at dimension updo= 3.

neglecting all correlations among (Euclidean) distances. ; B B
The mean-field “model” is the random link TSP,

MF % excess

described for our purposes by the “cavity equations"2 07120 i 0.0002. g?zzgf I?'égz
written down by Krauth and Mézard [3]. In our language 5 0.6979 + 0.0002 0.7100 +17%
this leads to
1 d[T(d/2+1) T/d
d) = ——| —/———
P (d) J7 2[ I'd+ 1)
- Figure 2 shows that this is indeed so for the mean-
X ] Ga1()[1 + Gy_i(x)]e G 1@ gy | field results obtained by numerical resolution of Eq. (2).

Looking at Bwir/+/d/2me (7d)'/*, we find an excellent

whereBur ~ Lyr/N'~/4 as in the Euclidean case, and fit by a 1/d power series with a leading order term
= (x + y)d which, to the precision of our raw numerical data, is
— wryr ~Ga(y) indistinguishable from 1.
Galx) = f 1+ Ga(y)]le “Way. (2 9
alx) —x d! [ )] v @) The fact that Bug/v/d/27me at d — « is another
excellent agreement in the = 1 case [3], that the cavity Property is known to be true for the pure random link
method is exact for theV — « random link TSP. In TSP [10]. We have thus added to Krauth and Mézard'’s
the following discussion we shall also present furtherinvestigation (au = 1) further evidence (at — =) that
justification for this assumption. the cavity method is exact. _ _
There is no known analytical solution of the integral Finally, let us rewrite the left-hand side of the best-fit
equation forG,(x) given in Eq. (2). However, it can be €duation in Fig. 2 with an additiondl /2)"/>* factor in
solved numerically; this was done by Krauth and Mézardhe denominator:

atd =1 andd = 2, giving Bur(d = 1) = 1.0208 and BMF 0.499395
Bmr(d = 2) = 0.7251 [3]. These values may be com- JdT2me (wdj2) 4 0.999997 +

pared withBx(d): Under periodic boundary conditions

Br(d = 1) = 1 (trivially) and Bz(d = 2) = 0.7120 (see N 0<L>_

previous section). Therefore, dt= 1 mean field has a d?

2.1% excess with respect to the Euclidean value, and @{otice that thel /d coefficient is practically indistinguish-

d =2 a 1.8% excess (see also Table ). Already at lowype from1/2. An interpretation of this remarkable result
dimension, then, mean field gives quite a good approxiig given in [11].

mation to the Euclidean case. It is amusing to note that
Krauth and Mézard themselves assumed a rather inaccurate

Euclidean valueBg(d = 2) = 0.749, and so their mean- 1.01
field results seemed poorer to them than they actually were :
We now extend the numerical solution of Eq. (2) to 1.009 3
higher dimensions. As in the problem of Euclidean g 1.008 [
finite size scaling, we can get an indication of what '\_‘6‘ 1,007 -
dimensional dependence to expectlifgr(d) by looking B ) 3
at the mearkth nearest-neighbor distand® multiplied — « 1.006 F
by the number of linksV. In the thermodynamic limit, @ -
X g 1.005 F
Eqg. (1) gives o :
lel/dr(d/z + l)l/d E 1.004 E_
7 ™~ 1003 F
= X
X_Ilﬁ_f_léél’ @ 41002 B
ND;(d) ~ 1 rg‘) at larged . 1001 B
1-1/d_|_4_ 1/2d ' F
N ZWeﬁﬂd) T
X[l + 0(%)} 0 001 002 003 004 005
N 1/d
Dividing by N'~'/4  this suggests that FIG. 2. Dimensional dependence of rescaled mean-field
y | TSP optimum. Best fit(y?> =7.46 X 107'!) is given
_ 1/2d 1 by Bur/Nd/2me (wd)"/* = 0999997 + 0.152821/d +
Bld) 2me (md) [1 * 0( d ﬂ 1.05488/d>.
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2.4 In the process we have extracted what we believe to
be the best result to date for the thermodynamic limit:
Be(d = 2) = 0.7120 = 0.0002.

At the same time we have, by means of a mean-field
method, examined the dimensional dependence of the TSP.
We have found that mean field is a good approximation (
2.1% error) to the Euclidean TSP dt= 1, 2, and3. We
have seen numerically that ét— <« the cavity equations
are compatible with the exact random link TSP result,
and thus have provided further evidence that they are
exact at all dimensions. Additional work is in progress
to understand the coefficied2 in the subleading term
of the cavity equation solution. Finally, comparing our
1F mean-field and Euclidean results suggests not only that the
08 bt vt Bertsimas-van Ryzin conjecture for the largelimit of

: Be(d) is correct, but also that the asymptotic behavior is
in fact Bg(d) = \Jd/2me (wd)"/>[1 + 0(1/d)].
1/d We are grateful to N. Cerf for his contributions, as
FIG. 3. Rescaled Euclidean TSP optimum (points) as a func\-NeII as to O. Bohigas for having sqgges?ed th? presgnt
tion of dimension, sandwiched between mean-field optimurf€S€arch. We also acknowledge fruitful discussions with
(solid line) and exact lower bound (dashed line). E. Bogomolny, M. Mézard, S. Otto, and N. Sourlas.
0. C. M. acknowledges support from NATO travel Grant
No. CRG 920831. Division de Physique Théoriques is a
unité de Recherche des Universités Paris XI et Paris VI
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