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Abstract We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the case
of multiple classes. Motivated by total variation techniques, the method involves
minimizing an energy functional made up of three terms. The first two terms promote
a stepwise continuous classification function with sharp transitions between classes,
while preserving symmetry among the class labels. The third term is a data fidelity
term, allowing us to incorporate prior information into themodel in a semi-supervised
framework. The performance of the algorithm on synthetic data, as well as on
the COIL and MNIST benchmark datasets, is competitive with state-of-the-art
graph-based multiclass segmentation methods.

Keywords Diffuse interfaces · Learning on graphs · Semi-supervised methods

1 Introduction

Many tasks in pattern recognition andmachine learning rely on the ability to quantify
local similarities in data, and to infer meaningful global structure from such local
characteristics [1]. In the classification framework, the desired global structure is a
descriptive partition of the data into categories or classes. Many studies have been
devoted to the binary classification problems. The multiple-class case, where data
are partitioned into more than two clusters, is more challenging. One approach is to
treat the problem as a series of binary classification problems [2]. In this paper, we

C. Garcia-Cardona (B) · A.G. Percus
Institute of Mathematical Sciences, Claremont Graduate University, Claremont
, CA, 91711, USA
e-mail: cristina.cgarcia@gmail.com

A.G. Percus
e-mail: allon.percus@cgu.edu

A. Flenner
Physics and Computational Sciences, Naval Air Warfare Center, China Lake, CA
93555, USA

© Springer International Publishing Switzerland 2015
A. Fred and M. De Marsico (eds.), Pattern Recognition Applications and Methods,
Advances in Intelligent Systems and Computing 318,
DOI 10.1007/978-3-319-12610-4_8

119



120 C. Garcia-Cardona et al.

develop an alternative method, involving a multiple-class extension of the diffuse
interface model introduced in [3].

The diffuse interface model by Bertozzi and Flenner combines methods for diffu-
sion on graphs with efficient partial differential equation techniques to solve binary
segmentation problems. As with other methods inspired by physical phenomena [4–
6], it requires the minimization of an energy expression, specifically the Ginzburg-
Landau (GL) energy functional. The formulation generalizes the GL functional to
the case of functions defined on graphs, and its minimization is related to the mini-
mization of weighted graph cuts [3]. In this sense, it parallels other techniques based
on inference on graphs via diffusion operators or function estimation [1, 7–13].

Multiclass segmentation methods that cast the problem as a series of binary clas-
sification problems use a number of different strategies: (i) deal directly with some
binary coding or indicator for the labels [10, 14], (ii) build a hierarchy or combination
of classifiers based on the one-vs-all approach or on class rankings [15, 16] or (iii)
apply a recursive partitioning scheme consisting of successively subdividing clusters,
until the desired number of classes is reached [12, 13]. While there are advantages
to these approaches, such as possible robustness to mislabeled data, there can be a
considerable number of classifiers to compute, and performance is affected by the
number of classes to partition.

In contrast, we propose an extension of the diffuse interface model that obtains a
simultaneous segmentation into multiple classes. The multiclass extension is built by
modifying the GL energy functional to remove the prejudicial effect that the order of
the labelings, given by integer values, has in the smoothing term of the original binary
diffuse interface model. A new term that promotes homogenization in a multiclass
setup is introduced. The expression penalizes data points that are located close in the
graph but are not assigned to the same class. This penalty is applied independently
of how different the integer values are, representing the class labels. In this way,
the characteristics of the multiclass classification task are incorporated directly into
the energy functional, with a measure of smoothness independent of label order,
allowing us to obtain high-quality results. Alternative multiclass methods minimize
a Kullback-Leibler divergence function [17] or expressions involving the discrete
Laplace operator on graphs [10, 18].

This paper is organized as follows. Section2 reviews the diffuse interface model
for binary classification, and describes its application to semi-supervised learning.
Section3 discusses our proposed multiclass extension and the corresponding com-
putational algorithm. Section4 presents results obtained with our method. Finally,
Sect. 5 draws conclusions and delineates future work.

2 Data Segmentation with the Ginzburg-Landau Model

The diffuse interface model [3] is based on a continuous approach, using the
Ginzburg-Landau (GL) energy functional to measure the quality of data segmen-
tation. A good segmentation is characterized by a state with small energy. Let u(x)
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be a scalar field defined over a space of arbitrary dimensionality, and representing
the state of the system. The GL energy is written as the functional

GL(u) = ε

2

∫
|∇u|2 dx + 1

ε

∫
Φ(u) dx, (1)

with ∇ denoting the spatial gradient operator, ε > 0 a real constant value, and Φ a
double well potential with minima at ±1:

Φ(u) = 1

4

(
u2 − 1

)2
. (2)

Segmentation requires minimizing the GL functional. The norm of the gradient
is a smoothing term that penalizes variations in the field u. The potential term, on
the other hand, compels u to adopt the discrete labels of +1 or −1, clustering the
state of the system around two classes. Jointly minimizing these two terms pushes
the system domain towards homogeneous regions with values close to the minima
of the double well potential, making the model appropriate for binary segmentation.

The smoothing term and potential term are in conflict at the interface between
the two regions, with the first term favoring a gradual transition, and the second
term penalizing deviations from the discrete labels. A compromise between these
conflicting goals is established via the constant ε. A small value of ε denotes a small
length transition and a sharper interface, while a large ε weights the gradient norm
more, leading to a slower transition. The result is a diffuse interface between regions,
with sharpness regulated by ε.

It can be shown that in the limit ε → 0 this function approximates the
total variation (TV) formulation in the sense of functional (Γ ) convergence [19],
producing piecewise constant solutions but with greater computational efficiency
than conventional TV minimization methods. Thus, the diffuse interface model pro-
vides a framework to compute piecewise constant functions with diffuse transitions,
approaching the ideal of the TV formulation, but with the advantage that the smooth
energy functional is more tractable numerically and can be minimized by simple
numerical methods such as gradient descent.

The GL energy has been used to approximate the TV norm for image segmenta-
tion [3] and image inpainting [4, 20]. Furthermore, a calculus on graphs equivalent
to TV has been introduced in [12, 21].

2.1 Application of Diffuse Interface Models to Graphs

An undirected, weighted neighborhood graph is used to represent the local rela-
tionships in the data set. This is a common technique to segment classes that are
not linearly separable. In the N -neighborhood graph model, each vertex vi ∈ V of
the graph corresponds to a data point with feature vector xi , while the weight wi j
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is a measure of similarity between vi and v j . Moreover, it satisfies the symmetry
property wi j = w j i . The neighborhood is defined as the set of N closest points in
the feature space. Accordingly, edges exist between each vertex and the vertices of
its N -nearest neighbors. Following the approach of [3], we calculate weights using
the local scaling of Zelnik-Manor and Perona [22],

wi j = exp

(
−||xi − x j ||2

τ(xi ) τ (x j )

)
. (3)

Here, τ(xi ) = ||xi − xM
i || defines a local value for each xi , where xM

i is the position
of the M th closest data point to xi , and M is a global parameter.

It is convenient to express calculations on graphs via the graph Laplacian matrix,
denoted by L. The procedure we use to build the graph Laplacian is as follows.

1. Compute the similarity matrix W with components wi j defined in (3). As the
neighborhood relationship is not symmetric, the resulting matrix W is also not
symmetric. Make it a symmetric matrix by connecting vertices vi and v j if vi is
among the N -nearest neighbors of v j or if v j is among the N -nearest neighbors
of vi [23].

2. Define D as a diagonal matrix whose i th diagonal element represents the degree
of the vertex vi , evaluated as

di =
∑

j

wi j . (4)

3. Calculate the graph Laplacian: L = D − W.

Generally, the graph Laplacian is normalized to guarantee spectral convergence in
the limit of large sample size [23]. The symmetric normalized graph Laplacian Ls is
defined as

Ls = D−1/2 L D−1/2 = I − D−1/2 W D−1/2. (5)

Data segmentation can now be carried out through a graph-based formulation of
the GL energy. To implement this task, a fidelity term is added to the functional as
initially suggested in [24]. This enables the specification of a priori information in
the system, for example the known labels of certain points in the data set. This kind
of setup is called semi-supervised learning (SSL). The discrete GL energy for SSL
on graphs can be written as [3]:
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GLSSL(u) = ε

2
〈u, Lsu〉 + 1

ε

∑
vi ∈V

Φ(u(vi )) +
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2 (6)

= ε

4

∑
vi ,v j ∈V

wi j

(
u(vi )√

di
− u(v j )√

d j

)2

+ 1

ε

∑
vi ∈V

Φ(u(vi ))

+
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2
. (7)

In the discrete formulation, u is a vector whose component u(vi ) represents the state
of the vertexvi , ε > 0 is a real constant characterizing the smoothness of the transition
between classes, and μ(vi ) is a fidelity weight taking value μ > 0 if the label
û(vi ) (i.e. class) of the data point associated with vertex vi is known beforehand, or
μ(vi ) = 0 if it is not known (semi-supervised).

Minimizing the functional simulates a diffusion process on the graph. The infor-
mation of the few labels known is propagated through the discrete structure bymeans
of the smoothing term, while the potential term clusters the vertices around the states
±1 and the fidelity term enforces the known labels. The energyminimization process
itself attempts to reduce the interface regions. Note that in the absence of the fidelity
term, the process could lead to a trivial steady-state solution of the diffusion equation,
with all data points assigned the same label.

The final state u(vi ) of each vertex is obtained by thresholding, and the result-
ing homogeneous regions with labels of +1 and −1 constitute the two-class data
segmentation.

3 Multiclass Extension

The double-well potential in the diffuse interface model for SSL drives the state of
the system towards two definite labels. Multiple-class segmentation requires a more
general potential function ΦM (u) that allows clusters around more than two labels.
For this purpose, we use the periodic-well potential suggested by Li and Kim [6],

ΦM (u) = 1

2
{u}2 ({u} − 1)2, (8)

where {u} denotes the fractional part of u,

{u} = u − �u	, (9)

and �u	 is the largest integer not greater than u.
This periodic potential well promotes a multiclass solution, but the graph Lapla-

cian term in Eq. (6) also requires modification for effective calculations due to the
fixed ordering of class labels in the multiple class setting. The graph Laplacian term
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Fig. 1 Three-class
segmentation. Black Class 0.
Gray Class 1. White Class 2

penalizes large changes in the spatial distribution of the system state more than
smaller gradual changes. In a multiclass framework, this implies that the penalty
for two spatially contiguous classes with different labels may vary according to the
(arbitrary) ordering of the labels.

This phenomenon is shown in Fig. 1. Suppose that the goal is to segment the image
into three classes: class 0 composed by the black region, class 1 composed by the
gray region and class 2 composed by the white region. It is clear that the horizontal
interfaces comprise a jump of size 1 (analogous to a two class segmentation) while
the vertical interface implies a jump of size 2. Accordingly, the smoothing term will
assign a higher cost to the vertical interface, even though from the point of view of
the classification, there is no specific reason for this. In this example, the problem
cannot be solved with a different label assignment. There will always be an interface
with higher costs than others independent of the integer values used.

Thus, themulticlass approach breaks the symmetry among classes, influencing the
diffuse interface evolution in an undesirable manner. Eliminating this inconvenience
requires restoring the symmetry, so that the difference between two classes is always
the same, regardless of their labels. This objective is achieved by introducing a new
class difference measure.

3.1 Generalized Difference Function

The final class labels are determined by thresholding each vertex u(vi ), with the label
yi set to the nearest integer:

yi =
⌊

u(vi ) + 1

2

⌋
. (10)

The boundaries between classes then occur at half-integer values corresponding
to the unstable equilibrium states of the potential well. Define the function r̂(x) to
represent the distance to the nearest half-integer:

r̂(x) =
∣∣∣∣12 − {x}

∣∣∣∣ . (11)
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Fig. 2 Schematic
interpretation of generalized
difference: r̂(x) measures
distance to nearest
half-integer, and ρ is a tree
distance measure

A schematic of r̂(x) is depicted in Fig. 2. The r̂(x) function is used to define a
generalized difference function between classes that restores symmetry in the energy
functional. Define the generalized difference function ρ as:

ρ(u(vi ), u(v j )) =
⎧⎨
⎩

r̂(u(vi )) + r̂(u(v j )) yi 
= y j

∣∣r̂(u(vi )) − r̂(u(v j ))
∣∣ yi = y j

(12)

Thus, if the vertices are in different classes, the difference r̂(x) between each
state’s value and the nearest half-integer is added, whereas if they are in the same
class, these differences are subtracted. The function ρ(x, y) corresponds to the tree
distance (see Fig. 2). Strictly speaking, ρ is not a metric since it does not satisfy
ρ(x, y) = 0 ⇒ x = y. Nevertheless, the cost of interfaces between classes becomes
the same regardless of class labeling when this generalized distance function is
implemented.

The GL energy functional for SSL, using the new generalized difference function
ρ and the periodic potential, is expressed as

MGLSSL(u) = ε

2

∑
vi ∈V

∑
v j ∈V

wi j√
di d j

[
ρ(u(vi ), u(v j ))

]2

+ 1

2ε

∑
vi ∈V

{u(vi )}2 ({u(vi )} − 1)2

+
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2
. (13)

Note that the smoothing term in this functional is composed of an operator that is
not just a generalization of the normalized symmetric LaplacianLs . The new smooth-
ing operation, written in terms of the generalized distance function ρ, constitutes a
non-linear operator that is a symmetrization of a different normalized Laplacian, the
random walk Laplacian Lw = D−1L = I − D−1W [23]. The reason is as follows.
The Laplacian L satisfies

(Lu)i =
∑

j

wi j
(
ui − u j

)
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and Lw satisfies

(Lwu)i =
∑

j

wi j

di

(
ui − u j

)
.

Now replace wi j/di in the latter expression with the symmetric form wi j/
√

di d j .
This is equivalent to constructing a reweighted graph with weights ŵi j given by:

ŵi j = wi j√
di d j

.

The corresponding reweighted Laplacian L̂ satisfies:

(L̂u)i =
∑

j

ŵi j
(
ui − u j

) =
∑

j

wi j√
di d j

(
ui − u j

)
, (14)

and

〈u, L̂u〉 = 1

2

∑
i, j

wi j√
di d j

(
ui − u j

)2
. (15)

While L̂ = D̂ − Ŵ is not a standard normalized Laplacian, it does have the
desirable properties of stability and consistency with increasing sample size of the
data set, and of satisfying the conditions for Γ -convergence to TV in the ε → 0
limit [25]. It also generalizes to the tree distance more easily than does Ls. Replacing
the difference

(
ui − u j

)2 with the generalized difference [
ρ(ui , u j )

]2 then gives the
new smoothing multiclass term of Eq. (13). Empirically, this new term seems to
perform well even though the normalization procedure differs from the binary case.

By implementing the generalized difference function on a tree, the cost of inter-
faces between classes becomes the same regardless of class labeling.

3.2 Computational Algorithm

The GL energy functional given by (13) may beminimized iteratively, using gradient
descent:

un+1
i = un

i − dt

[
δMGLSSL

δui

]
, (16)

where ui is a shorthand for u(vi ), dt represents the time step and the gradient direction
is given by:

δMGLSSL

δui
= ε R̂(un

i ) + 1

ε
Φ ′

M (un
i ) + μi

(
un

i − ûi
)

(17)
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R̂(un
i ) =

∑
j

wi j√
di d j

[
r̂(un

i ) ± r̂(un
j )

]
r̂ ′(un

i ) (18)

Φ ′
M (un

i ) = 2 {un
i }3 − 3 {un

i }2 + {un
i } (19)

The gradient of the generalized difference function ρ is not defined at half integer
values. Hence, we modify the method using a greedy strategy: after detecting that a
vertex changes class, the new class thatminimizes the smoothing term is selected, and
the fractional part of the state computed by the gradient descent update is preserved.
Consequently, the new state of vertex i is the result of gradient descent, but if this
causes a change in class, then a new state is determined.

Algorithm 1: Calculate u.

Require: ε, dt, ND, nmax, K
Ensure: out = uend

for i = 1 → ND do
u 0

i ← rand((0, K )) − 1
2 . If μi > 0, u 0

i ← ûi
end for
for n = 1 → nmax do

for i = 1 → ND do
un+1

i ← un
i − dt

(
ε R̂(un

i ) + 1
ε

Φ ′
M (un

i ) + μi
(
un

i − ûi
))

if Label(un+1
i ) 
= Label(un

i ) then

k̂ = argmin 0≤k<K
∑

j
wi j√
di d j

[
ρ(k + {un+1

i }, un+1
j )

]2

un+1
i ← k̂ + {un+1

i }
end if

end for
end for

Specifically, let k represent an integer in the range of the problem, i.e. k ∈
[0, K − 1], where K is the number of classes in the problem. Given the fractional
part {u} resulting from the gradient descent update, find the integer k that minimizes∑

j
wi j√
di d j

[
ρ(k + {ui }, u j )

]2, the smoothing term in the energy functional, and use

k + {ui } as the new vertex state. A summary of the procedure is shown in Algo-
rithm 1 with ND representing the number of points in the data set and nmax denoting
the maximum number of iterations.

4 Results

The performance of the multiclass diffuse interface model is evaluated using a num-
ber of data sets from the literature, with differing characteristics. Data and image
segmentation problems are considered on synthetic and real data sets.
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4.1 Synthetic Data

4.1.1 Three Moons

A synthetic three-class segmentation problem is constructed following an analogous
procedure to the one used in [11] for “two moon” binary classification. Three half
circles (“three moons”) are generated in R

2. The two top circles have radius 1 and
are centered at (0, 0) and (3, 0). The bottom half circle has radius 1.5 and is centered
at (1.5, 0.4). 1,500 data points (500 from each of these half circles) are sampled
and embedded in R100. The embedding is completed by adding Gaussian noise with
σ 2 = 0.02 to each of the 100 components for each data point. The dimensionality
of the data set, together with the noise, make this a nontrivial problem.

The symmetric normalized graph Laplacian is computed for a local scaling graph
using N = 10 nearest neighbors and local scaling based on the M = 10th closest
point. The fidelity term is constructed by labeling 25 points per class, 75 points
in total, corresponding to only 5% of the points in the data set. The multiclass
GL method was further refined by geometrically decreasing ε over the course of
the minimization process, from ε0 to ε f by factors of 1 − Δε (nmax iterations per
value of ε), to allow sharper transitions between states as in [3]. Table1 specifies the
parameters used. Average accuracies and computation times are reported over 100
runs. Results for k-means and spectral clustering (obtained by applying k-means to
the first 3 eigenvectors of Ls) are included as reference.

Segmentations obtained for spectral clustering and formulticlassGLwith adaptive
ε methods are shown in Fig. 3. The figure displays the best result obtained over
100 runs, corresponding to accuracies of 81.3% (spectral clustering) and 97.9%
(multiclass GL with adaptive ε). The same graph structure is used for the spectral
clustering decomposition and the multiclass GL method.

For comparison, we note the results from the literature for the simpler two-moon
problem (also R

100, σ 2 = 0.02 noise). The best results reported include: 94% for
p-Laplacian [11], 95.4% for ratio-minimization relaxedCheeger cut [12], and 97.7%
for binary GL [3]. While these are not SSL methods, the last of these does involve
other prior information in the form of a mass balance constraint. It can be seen that

Table 1 Three-moons results

Method Parameters Correct % (stddev %) Time [s]

k-means – 72.1 (0.35) 0.66

Spectral clustering 3 eigenvectors 80.0 (0.59) 0.02

Multiclass GL μ = 30, ε = 1, dt = 0.01, 95.1 (2.33) 0.89

nmax = 1, 000

Multiclass GL (adaptive ε) μ = 30, ε0 = 2, ε f = 0.01, 96.2 (1.59) 1.61

Δε = 0.1, dt = 0.01,

nmax = 40
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Fig. 3 Three-moons segmentation. Left Spectral clustering. Right Multiclass GL with adaptive ε

(a) (b)

(c) (d)

Fig. 4 Evolution of label values in three moons, using multiclass GL (fixed ε): R2 projections
at 100, 300 and 1,000 iterations, and energy evolution a 100 iterations, b 300 iterations, c 1,000
iterations, d Energy evolution

our procedures produce similarly high-quality results even for the more complex
three-class segmentation problem.

It is instructive to observe the evolution of label values in the multiclass method.
Figure4 displaysR2 projections of the results of multiclass GL (with fixed ε), at 100,
300 and 1,000 iterations. The system starts from a random configuration. Notice that
after 100 iterations, the structure is still fairly inhomogeneous, but small uniform
regions begin to form. These correspond to islands around fidelity points and become
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seeds for further homogenization. The system progresses fast, and by 300 iterations
the configuration is close to the final result: some points are still incorrectly labeled,
mostly on the boundaries, but the classes form nearly uniform clusters. By 1,000
iterations the procedure converges to a steady state and a high-quality multiclass
segmentation (95% accuracy) is obtained.

In addition, the energy evolution for one typical run is shown in Fig. 4d for the case
with fixed ε. The figure includes plots of the total energy (red) as well as the partial
contributions of each of the three terms, namely smoothing (green), potential (blue)
and fidelity (purple). Observe that at the initial iterations, the principal contribution
to the energy comes from the smoothing term, but it has a fast decay due to the
homogenization taking place. At the same time, the potential term increases, as ρ

pushes the label values toward half-integers. Eventually, the minimization process is
driven by the potential term,while small local adjustments aremade. Thefidelity term
is satisfied quickly and has almost negligible influence after the first few iterations.
This picture of the “typical” energy evolution can serve as a useful guide in evaluating
the performance of the method when no ground truth is available.

4.1.2 Swiss Roll

A synthetic four-class segmentation problem is constructed using the Swiss roll map-
ping, following the procedure in [26]. The data are created in R2 by randomly sam-
pling from a Gaussian mixture model of four components with means at (7.5, 7.5),
(7.5, 12.5), (12.5, 7.5) and (12.5, 12.5), and all covariances given by the 2×2 iden-
tity matrix. 1,600 points are sampled (400 from each of the Gaussians). The data
are then converted from 2 to 3 dimensions, with the following Swiss roll mapping:
(x, y) → (x cos(x), y, x sin(x)).

As before, we construct the weight matrix for a local scaling graph, with N = 10
and scaling based on the M = 10th closest neighbor. The fidelity set is formed by
labeling 5% of the points selected randomly.

Table2 gives a description of the parameters used, as well as average results
over 100 runs for k-means, spectral clustering and multiclass GL. The best results
achieved over these 100 runs are shown in Fig. 5. These correspond to accuracies of
50.1% (spectral clustering) and 96.4% (multiclass GL). Notice that spectral cluster-
ing produces results composed of compact classes, but with a configuration that does

Table 2 Swiss roll results

Method Parameters Correct % (stddev %) Time s

k-means – 37.9 (0.91) 0.05

Spectral clustering 4 eigenvectors 49.7 (0.96) 0.05

Multiclass GL μ = 50, ε = 1, dt = 0.01 91.0 (2.72) 0.75

nmax = 1,000
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Fig. 5 Swiss roll results a Spectral clustering, b Multiclass GL

not follow the manifold structure. In contrast, the multiclass GL method is capable
of segmenting the manifold structure correctly, achieving higher accuracies.

4.2 Image Segmentation

We apply our algorithm to the color image of cows shown in Fig. 6a. This is a
213 × 320 color image, to be divided into four classes: sky, grass, black cow and
red cow. To construct the weight matrix, we use feature vectors defined as the set of
intensity values in the neighborhood of a pixel. The neighborhood is a patch of size
5 × 5. Red, green and blue channels are appended, resulting in a feature vector of
dimension 75.A local scaling graph with N = 30 and M = 30 is constructed. For
the fidelity term, 2.6% of labeled pixels are used (Fig. 6b).

Fig. 6 Color (multi-channel) image. Original image, sampled fidelity and results a Original, b
Sampled, c Black cow, d Red cow, e Grass, f Sky
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The multiclass GL method used the following parameters: μ = 30, ε = 1,
dt = 0.01 and nmax = 800. The average time for segmentation using different
fidelity sets was 19.9s. Results are depicted in Fig. 6c–f. Each class image shows
in white the pixels identified as belonging to the class, and in black the pixels of
the other classes. It can be seen that all the classes are clearly segmented. The few
mistakes made are in identifying some borders of the black cow as part of the red
cow, and vice-versa.

4.3 Benchmark Sets

4.3.1 COIL-100

The Columbia object image library (COIL-100) is a set of 7,200 color images of 100
different objects taken from different angles (in steps of 5 degrees) at a resolution of
128×128 pixels [27]. This image database has been preprocessed andmade available
by [28] as a benchmark for SSL algorithms. In summary, the red channel of each
image is downsampled to 16 × 16 pixels by averaging over blocks of 8 × 8 pixels.
Then 24 of the objects are randomly selected and partitioned into six arbitrary classes:
38 images are discarded from each class, leaving 250 per class or 1,500 images in all.
The downsampled 16× 16 images are further processed to hide the image structure
by rescaling, adding noise and masking 15 of the 256 components. The result is a
data set of 1,500 data points, of dimension 241.

We build a local scaling graph, with N = 4 nearest neighbors and scaling based
on the M = 4th closest neighbor. The fidelity term is constructed by labeling 10%
of the points, selected at random. The multiclass GL method used the following
parameters: μ = 100, ε = 4, dt = 0.02 and nmax = 1,000. An average accuracy of
93.2%, with standard deviation of 1.27%, is obtained over 100 runs, with an average
time for segmentation of 0.29s.

For comparison,we note the results reported in [17]: 83.5% (k-nearest neighbors),
87.8% (LapRLS), 89.9% (sGT), 90.9% (SQ-Loss-I) and 91.1% (MP). All these are
SSL methods (with the exception of k-nearest neighbors which is supervised), using
10% fidelity just as we do. As can be seen, our results are of greater accuracy.

4.3.2 MNIST Data

The MNIST data set [29] is composed of 70,000 28 × 28 images of handwritten
digits 0 through 9. The task is to classify each of the images into the corresponding
digit. Hence, this is a 10-class segmentation problem.

The weight matrix constructed corresponds to a local scaling graph with N = 8
nearest neighbors and scaling based on the M = 8th closest neighbor. We perform
no preprocessing, so the graph directly uses the 28×28 images. This yields a data set
of 70,000 points of dimension 784. For the fidelity term, 250 images per class (2,500



Multiclass Semi-supervised Learning on Graphs … 133

images, corresponding to 3.6% of the data) are chosen randomly. The multiclass GL
method used the following parameters:μ = 50, ε = 1, dt = 0.01 and nmax = 1,500.
An average accuracy of 96.9%, with standard deviation of 0.04%, is obtained over
50 runs. The average time for segmentation using different fidelity sets was 60.89 s.

Comparative results from other methods reported in the literature include: 87.1%
(p-Laplacian [11]), 87.64% (multicut normalized 1-cut [13]), 88.2% (Cheeger
cuts [12]), 92.6% (transductive classification [9]). As with the three-moon prob-
lem, some of these are based on unsupervised methods but incorporate enough
prior information that they can fairly be compared with SSL methods. Comparative
results from supervised methods are: 88% (linear classifiers [29, 30]), 92.3–98.74%
(boosted stumps [29]), 95.0–97.17% (k-nearest neighbors [29, 30]), 95.3–99.65%
(neural/convolutional nets [29, 30]), 96.4–96.7% (nonlinear classifiers [29, 30]),
98.75–98.82% (deep belief nets [31]) and 98.6–99.32% (SVM [30]). Note that all
of these take 60,000 of the digits as a training set and 10,000 digits as a testing
set [29], in comparison to our approach where we take only 3.6% of the points for
the fidelity term. Our SSL method is nevertheless competitive with these supervised
methods. Moreover, we perform no preprocessing or initial feature extraction on the
image data, unlike most of the other methods we compare with (we have excluded
from the comparison, however, methods that explicitly deskew the image). While
there is a computational price to be paid in forming the graph when data points use
all 784 pixels as features, this is a simple one-time operation.

5 Conclusions

We have proposed a new multiclass segmentation procedure, based on the diffuse
interfacemodel. Themethod obtains segmentations of several classes simultaneously
without using one-vs-all or alternative sequences of binary segmentations required
by other multiclass methods. The local scaling method of Zelnik-Manor and Perona,
used to construct the graph, constitutes a useful representation of the characteristics
of the data set and is adequate to deal with high-dimensional data.

Our modified diffusion method, represented by the non-linear smoothing term
introduced in the Ginzburg-Landau functional, exploits the structure of the multi-
classmodel and is not affected by the ordering of class labels. It efficiently propagates
class information that is known beforehand, as evidenced by the small proportion
of fidelity points (2% – 10% of dataset) needed to perform accurate segmentations.
Moreover, the method is robust to initial conditions. As long as the initialization
represents all classes uniformly, different initial random configurations produce very
similar results. The main limitation of the method appears to be that fidelity points
must be representative of class distribution. As long as this holds, such as in the
examples discussed, the long-time behavior of the solution relies less on choosing
the “right” initial conditions than do other learning techniques on graphs.

State-of-the-art results with small classification errors were obtained for all clas-
sification tasks. Furthermore, the results do not depend on the particular class label
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assignments. Future work includes investigating the diffuse interface parameter ε.
We conjecture that the proposed functional converges (in the Γ -convergence sense)
to a total variational type functional on graphs as ε approaches zero, but the exact
nature of the limiting functional is unknown.
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