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Neighbor-Neighbor Correlations 
Explain Measurement Bias in 
Networks
Xin-Zeng Wu1,2, Allon G. Percus3 & Kristina Lerman1

In numerous physical models on networks, dynamics are based on interactions that exclusively 
involve properties of a node’s nearest neighbors. However, a node’s local view of its neighbors may 
systematically bias perceptions of network connectivity or the prevalence of certain traits. We 
investigate the strong friendship paradox, which occurs when the majority of a node’s neighbors have 
more neighbors than does the node itself. We develop a model to predict the magnitude of the paradox, 
showing that it is enhanced by negative correlations between degrees of neighboring nodes. We 
then show that by including neighbor-neighbor correlations, which are degree correlations one step 
beyond those of neighboring nodes, we accurately predict the impact of the strong friendship paradox 
in real-world networks. Understanding how the paradox biases local observations can inform better 
measurements of network structure and our understanding of collective phenomena.

Local interactions among nodes in a complex network can lead to an astounding array of collective phenom-
ena. Examples include viral outbreaks in social networks, cascading failures in the power grid and financial net-
works, synchronization of coupled oscillators, opinion dynamics and consensus formation in human groups. 
Researchers have linked the structure of complex networks to the dynamics of collective phenomena unfolding 
on them: highly connected nodes amplify viral outbreaks1–3, while community structure affects the dynamics of 
synchronization4 and the spread of social contagions5.

A node’s own local view of a network, however, may be systematically biased. One source of bias is Feld’s 
friendship paradox: the number of connections, or degree, of a node is smaller than the average of its neighbor’s 
degrees6. Recently, more subtle forms of the paradox have been proposed. The strong friendship paradox7 states 
that the degree of a node tends to be smaller than the median of its neighbor’s degrees. Roughly speaking, this 
is equivalent to the node having fewer neighbors than do a majority of its neighbors. But unlike the original 
friendship paradox and some recent generalizations8–11, the strong friendship paradox does not arise as a straight-
forward result of sampling from skewed distributions7. The strong friendship paradox can dramatically distort 
local measurements in a network, leading to the “majority illusion”12 in which a globally rare attribute may be 
overrepresented in the local neighborhoods of many nodes. Physical systems whose dynamics are governed by 
majority rule—from Ising spin interactions13 to more complex voting models14—may be affected by this paradox.

In this manuscript, we develop a stochastic model to predict the magnitude of the strong friendship paradox. 
Specifically, we show that (a) increasingly disassortative networks exhibit a larger paradox, and (b) accurately 
modeling it requires considering degree correlations one step beyond those of neighboring nodes.

Given a network with degree distribution p(k), we define the global probability of the strong friendship para-
dox as Pparadox = ∑k p(k)f(k), where f(k) is the probability that a randomly chosen node with degree k experiences 
the paradox. Formally, we define

≡ ′ ′ >f k P k k k k( ) (Median{ , , } ),k1

where ′ki  is the degree of the node’s ith neighbor.
Of course, networks can have structure beyond that given by the degree distribution. The dK-series frame-

work15 specifies network structure as a series of joint degree distributions of subgraphs of d nodes. Thus, a net-
work’s 1K-structure is specified by the degree distribution p(k). The 2K-structure captures degree correlations of 
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nodes in connected pairs. This is specified by the joint degree distribution e(k, k′), the probability that an edge 
links two nodes with degrees k and k′. It follows that the degree distribution of an edge’s endpoint is 

= ∑ ′ =′q k e k k kp k k( ) ( , ) ( )/k . Similarly, a network’s 3K-structure is specified by the joint degree distribution of 
connected triplets, either wedges or triangles. We find that these higher-order degree correlations can be substan-
tial in real-world networks, possibly reflecting their macroscopic organization into a core-periphery structure, 
and that accounting for them is necessary for a quantitative understanding of the strong friendship paradox.

The strong friendship paradox depends only on the comparison between the degrees of a node and its neigh-
bors. The probability Q> that a node sees a neighbor with degree larger than its own can be written as:

∑∑ ∑∑= ′| =
′

>
′> ′>

Q P k k p k k e k k
k

( ) ( ) ( , ) ,
(1)k k k k k k

since the neighbor degree distribution of a degree k node is P(k′|k) = e(k, k′)/q(k). This expression uses informa-
tion about the network’s 2K-structure, which is globally measured by the assortativity coefficient16

∑= ′ ′ − ′
′
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where the variance of k is taken with respect to the distribution q(k):
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In assortative networks (r > 0), nodes preferentially link to other nodes with similar degree, while in disassor-
tative networks (r < 0), they prefer to link to others with dissimilar degree, e.g., high to low degree nodes. Since k 
is in the numerator of the sum for r but in the denominator of Eq. (1), given the normalization ∑ ′ =′e k k( , ) 1k k, , 
we may expect disassorativity to magnify the paradox in networks, and assortativity to suppress it. Previous 
numerical results for the conventional friendship paradox10 support this prediction.

Results
The 2K model.  Given a randomly chosen node with degree k, define an indicator function xi, i = 1…k, to 
track the degree of the node’s ith neighbor:
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To a close approximation (and exactly, for odd k), the node is in the paradox regime if ≡ ∑ >=x x
k i

k
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1
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2

.
To understand how network structure affects the strong friendship paradox, we now examine μx(k), the prob-

ability that a neighbor (say the ith one) of a randomly chosen degree-k node has degree greater than k:

∑µ = = | = ′ > | =
′

′>
k P x k P k k k e k k
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( ) ( 1 ) ( ) ( , )

( ) (4)x i i
k k

If we assume that degrees of neighbors are independent and identically distributed random variables, the prob-
ability for a degree-k node to observe the strong friendship paradox is then given by the binomial distribution:
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For large k, f(k) is close to Gaussian. In terms of the normal distribution’s cumulative distribution function Φ,
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To demonstrate how assortativity modifies the strong friendship paradox, we consider a network with e(k, 
k′) that has a bivariate log-normal distribution, a long-tailed distribution defined on positive domain of k, with 
equal means m, equal variances s2, and correlation coefficient c. This form of the distribution allows for analytical 
treatment of the problem. Thus, the assortativity can be written as
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Note that the assortativity is bounded by − ≤ ≤−e r 1s 2
, and increases with c. We can then express μx(k) ana-

lytically as
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It follows that f(k) decreases with k. As the network becomes more disassortative (c < 0), f(k) undergoes an 
increasingly sharp transition from 1 to 0 around k = em (Fig. 1(a)). Given that most nodes have low degree, this 
leads to a globally stronger paradox in more disassortative networks (Fig. 1(b)), consistent with our prediction.

The structure of real-world networks creates conditions for the paradox. Table 1 reports the observed fraction 
of nodes in these networks who see a majority of their neighbors with a larger degree. This fraction is very large 
in all networks, ranging from 75% to 90%.

Table 1 shows that the observed fractions of nodes experiencing the paradox are close to the global proba-
bilities predicted by the 2K model, when μx(k) is set to the actual frequency with which a neighbor of a degree-k 
node has larger degree. However, a breakdown by degree class reveals significant deviations. Figure 2 plots the 
paradox probability f(k) for a degree-k node (blue dots). We define the degree at which the 2K estimate (Eq. (6)) 
of paradox probability is 0.5 as the critical degree kc of the network. By construction, kc = Median(q(k)). Nodes 
with degree k < kc are likely to experience the paradox, while those with k > kc are unlikely to do so. The 2K model 
(dotted line) overestimates the paradox for low-degree nodes and underestimates it for high-degree nodes. This 
suggests that the 2K model is insufficient, and we need to take into account structure beyond degree correlations 
of connected pairs of nodes.

The 3K model.  If neighbor degrees are identically distributed but correlated random variables, Eq. (6) must 
be modified to represent a multivariate rather than a single binomial distribution. To deal with the correlation, we 
now consider a pair of neighbors, with degree ki and kj, of a single degree-k node, and their indicator functions xi 
and xj as defined in Eq. (3). The corresponding multivariate normal approximation then gives

Figure 1.  Impact of assortativity on strong friendship paradox. The matrix e(k, k′) has bivariate log-normal 
distribution with parameters m = 2.5, s = 1.25, c ranges from −0.75 to 0.75, which corresponds to assortativity r 
in the range −0.18 to 0.6.

Network Type Observed
3K 
model

2K 
model

LiveJournal Social 83.71% 84.43% 86.95%

Youtube Social 89.94% 88.51% 90.34%

Skitter Internet 88.62% 90.35% 95.79%

Google Web 77.31% 78.25% 84.36%

ArXiv HEP Citation 78.71% 79.67% 83.83%

English words Semantic 75.23% 71.00% 71.05%

Table 1.  Observed fraction of nodes in real-world networks that experience the strong friendship paradox, 
compared to predictions of the two proposed models.
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Unlike in Eq. (6), where f(k) is completely determined by μx(k), the 3K model requires the covariance term to 
be specified. Using values determined empirically from real-world networks as in the 2K model, we obtain very 
accurate paradox probability estimates (solid line in Fig. 2). These estimates also improve on the global 2K results 
shown in Table 1 for all cases except Youtube and English words, where the two estimates are nearly identical due 
to their close agreement for low degree values that represent a large fraction of nodes in the network.

To understand the effect of the covariance term, consider the 3K-distribution ′ ′t k k k( , , )i j , the joint degree 
distribution of a connected ordered triplet of nodes with degrees ′ ′k k k( , , )i j . Conditioning on the degree k of the 
focal node gives the joint degree distribution of its two neighbors:
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Figure 2.  Probability of the strong friendship paradox in six real-world networks, comparing observed fraction 
of degree-k nodes that are in the paradox regime (blue dots) to predictions of the 2K model (dotted red line) and 
the 3K model (solid red line).
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and ′ >P k k k( )i  is given by Eq. (4). Thus, the covariance takes into account correlations only up to the level of 
chains ′ ′k k k( , , )i j . Any higher-order correlations beyond 3K, such as those involving connected subgraphs of four 
nodes, would no longer be consistent with a normal approximation for f(k), since they would involve information 
beyond the second moment of the indicator function. The remarkable success of the 3K model in Fig. 2 suggests 
that such higher-order correlations are not needed to explain the paradox, or that they are negligible in real-world 
networks.

Define the neighbor-neighbor correlation as
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Note that this correlation, like σx(k), is based not on the neighbors’ degrees but on the indicator function com-
paring them to the node’s degree. Figure 3 shows empirically determined values of ρx(k) for the real-world net-
works we studied. Recall that in the 2K model, the probability that a degree-k node has a neighbor with degree 
greater than k is determined completely by e(k, k′) and is unrelated to the degrees of the other neighbors. One 
might reasonably expect low-degree nodes to have mostly neighbors of higher degree, high-degree nodes to have 
mostly neighbors of lower degree, and medium-degree nodes to have a mix of both. Figure 3, however, depicts a 
different scenario: medium-degree nodes prefer to have neighbors with similar degree to one another—whether 
those neighbors have higher or lower degree. To see how these correlations may be indicative of the macroscopic 
organization of a network, we plot the distribution of x , the fraction of higher-degree neighbors, for nodes with 
k = kc. In the technological networks of Skitter and Google, such medium-degree nodes link more often to 
high-degree nodes, possibly reflecting a hierarchical network structure with medium-degree at the top level and 
high-degree nodes at the next level. The remaining networks show a broad distribution of x , consistent with a 
core-periphery network structure where medium-degree nodes link to higher-degree nodes in the core and to 
lower-degree nodes in the periphery17, 18.

Discussion
The connection between local measurement bias and network structure revealed by the strong friendship paradox 
is crucial for several reasons. It is often impractical to observe large networks in their entirety: instead, researchers 
estimate network properties by exploring local neighborhoods of select nodes. The paradox, however, may sys-
tematically bias local views of networks structure, including sampled degree distribution19. The strong friendship 
paradox also affects measurements of information in networks. Consider a network where nodes have attributes 
and estimate their prevalence from local observations. When attribute and degree are correlated, the paradox can 
create an illusion that the attribute is common even when it is globally rare12. Finally, quantifying measurement 
bias may be necessary for predicting the evolution of dynamic processes such as domain formation by majority 
rule in interacting spin systems13, or synchronization of frequencies in complex networks such as electrical power 
grids20. Accounting for neighbor-neighbor correlations could be instrumental to the success of network models 
for such systems.

In this paper, we have studied strong friendship paradox in networks, a phenomenon that distorts nodes’ 
observations of local network structure. The paradox leads most nodes to observe that a majority of their neigh-
bors have a larger degree than their own. We have developed an analytical model of the strong friendship paradox, 

Figure 3.  (Left) Neighbor-neighbor correlation coefficient by degree class for each network discussed in this 
paper. (Data have been smoothed). (Right) Distribution of x  at the critical degree kc.
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enabling highly accurate predictions of its strength in networks. In contrast to Feld’s friendship paradox6, which 
exists in any network with variance in the degree distribution, the strong friendship paradox requires infor-
mation about higher-order network structure. Specifically, negative correlations between degrees of connected 
nodes—given by network’s 2K structure—will magnify the paradox, especially in networks with a skewed degree 
distribution. The impact of disassortativity, however, is modulated by degree correlations between nodes’ neigh-
bors. These correlations—given by network’s 3K structure—are necessary to accurately quantify the paradox. 
The success of the 3K model in explaining the paradox is consistent with the observation15 that it is sufficient to 
capture known network properties. In order to mitigate the effects of local measurement bias in networks, it is 
important to account for the strong friendship paradox and how it is impacted by higher-order network structure.

Methods
Data description.  We study six networks from a variety of domains, including social networks (friendship 
links on LiveJournal blogging site soc-LiveJournal121, community structure on Youtube com-Youtube21) techno-
logical networks (Skitter internet graph as-skitter21 and Google web hyperlink graph web-Google21), scientific 
citations graph (Arxiv cit-HepPh21), and relationships between English words22. Table 2 shows some basic prop-
erties of the networks. These networks vary in size from 34.5 K nodes (Arxiv) to almost 4 M nodes (LiveJournal), 
and assortativity from 0.045 (LiveJournal) to −0.08 (Skitter).
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Name Type Nodes Edges Assortativity

1 LiveJournal Social 3,997,962 34,681,189 0.045145

2 Youtube Social 1,134,890 2,987,624 −0.036910

3 Skitter Internet 1,696,415 11,095,298 −0.081422

4 Google Hyperlink 875,713 4,322,051 −0.055089

5 ArXiv HEP Citation 34,546 420,877 −0.005943

6 WordNet Semantic 146,005 656,999 −0.006286

Table 2.  List of real world networks and their basic profiles. Note that directed edges, if they exist, are treated as 
undirected edges.
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