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Abstract

Structural and topological information play a key role in modeling flow and transport through fractured rock in the
subsurface. Discrete fracture network (DFN) computational suites such as DFNWORKS (Hyman et al. Comput. Geosci. 84,
10-19 2015) are designed to simulate flow and transport in such porous media. Flow and transport calculations reveal that
a small backbone of fractures exists, where most flow and transport occurs. Restricting the flowing fracture network to
this backbone provides a significant reduction in the network’s effective size. However, the particle-tracking simulations
needed to determine this reduction are computationally intensive. Such methods may be impractical for large systems or
for robust uncertainty quantification of fracture networks, where thousands of forward simulations are needed to bound
system behavior. In this paper, we develop an alternative network reduction approach to characterizing transport in DFNs,
by combining graph theoretical and machine learning methods. We consider a graph representation where nodes signify
fractures and edges denote their intersections. Using random forest and support vector machines, we rapidly identify a
subnetwork that captures the flow patterns of the full DFN, based primarily on node centrality features in the graph. Our
supervised learning techniques train on particle-tracking backbone paths found by DFNWORKS, but run in negligible time
compared to those simulations. We find that our predictions can reduce the network to approximately 20% of its original
size, while still generating breakthrough curves consistent with those of the original network.

Keywords Machine learning - Discrete fracture networks - Support vector machines - Random forest - Centrality

1 Introduction for fluid flow and associated transport of dissolved chem-
icals. Characterizing flow and transport through fractured
In low permeability media, such as shales and granite, inter- media in the subsurface is critical in many civil, industrial,

connected networks of fractures are the primary pathways  and security applications including drinking water aquifer
management [35], hydrocarbon extraction [20, 28], and car-
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form within the network [1, 2, 11, 12, 25, 42]. The formation
of these flow channels indicates that much of the flow
and transport occurs in a subnetwork of the whole domain.
There are techniques available to identify the fractures
that make up these subnetworks, commonly referred to as
the backbone [3, 32]. However, these techniques require
resolving flow and/or transport through the entire network
prior to being able to identity the backbone. For large
networks, particle-based simulations [43, 48] can be costly
in terms of required computational time. These costs
are exacerbated because numerous network realizations
are required to obtain trustworthy statistics of upscaled
quantities of interest, e.g., the distribution of fracture
characteristics that make up the backbone. Because the
connectivity of the networks is dominant in determining
where flow and transport occurs in sparse systems than
geometric or hydraulic properties [21], it should be possible
to identify high-flow and transport subnetworks using the
network’s topological properties.

Graph representations of fracture networks have been
proposed by Ghaffari et al. [14] and independently by
Andresen et al. [4]. These graph mappings allow for
characterization of the network topology of both two- and
three-dimensional fracture systems and, moreover, enable
quantitative comparisons between real fracture networks
and models generating synthetic networks. Vevatne et
al. [51] and Hope et al. [19] have used this graph
construction for analyzing fracture growth and propagation,
showing how topological properties of the network such
as assortativity relate to the growth mechanism. Hyman
et al. [23] used graph representations of three-dimensional
fracture networks to isolate subnetworks where the fastest
transport occurred by finding the shortest path between
inflow and outflow boundaries. Santiago et al. [45-47]
proposed a method of topological analysis using a related
graph representation of fracture networks. By measuring
centrality properties of nodes in the graph, which describe
characteristics such as the number of shortest paths through
a given node, they developed a method intended to predict
regions of high-flow conductivity in the network.

In recent years, there has been increased interest in the
use of machine learning in the geosciences. A range of
different regression and classification methods have been
applied to a model of landslide susceptibility, demonstrating
their predictive value [15]. Community detection methods
have been used in fractured rock samples to identify regions
expected to have high-flow conductivity [46]. Clustering
analysis has been used in subsurface systems to construct
more accurate flow inversion algorithms [34].

We combine the two approaches of discrete fracture
network (DFN) graph representations and machine learning
to identify subnetworks that conduct significant flow and
transport. We represent a fracture by a node in the graph,
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and an intersection between two fractures by an edge. Using
this construction, the graph retains topological information
about the network as node-based properties, or “features.”
On the basis of six features, four topological and two
physical, we apply machine learning to reduce the fracture
network to a subnetwork. We use two supervised learning
methods, random forest and support vector machines,
that train on backbones defined using particle-tracking
simulations in the entire DFN. Both algorithms have the
advantage of being general-purpose methods, suitable for
geometric as well as non-geometric features, and requiring
relatively little parameter tuning. Our overall goal is to
combine graph theoretical methods and machine lear-
ning to isolate subnetworks where the the majority of
flow and transport occurs, as an alternative to high-fidelity
DFEN flow and transport simulations on the entire fracture
network.

Although our algorithms train on particle backbones,
we depart from a conventional machine learning approach
in that we do not necessarily aim to reproduce these
backbones. The objective is to learn from them, obtaining
network reductions that are valid for characterizing flow and
transport. The particle backbone is only one out of many
such possible reductions. Ultimately, the quality of a result
is measured through its breakthrough curve (BTC), which
gives the distribution of times for passive tracer particles to
pass through the network.

Under different parameter choices for random forest and
SVM, we are able to reduce fracture networks on average to
between 39 and 2.5% of their original number of fractures.
Reductions to as little as 21% still result in a BTC in
good agreement with that of the full network. Thus, our
methods yield subnetworks that are significantly smaller
than the full network, while matching its main flow and
transport properties. Notably, we are able to generate these
subnetworks in seconds, whereas the computation time
for extracting the backbone from particle-based transport
simulations is on the order of an hour.

We also assess the importance of the different features
used to characterize the data, finding that they cluster
into three natural groups. The global topological quantities
are the most significant ones, followed by the one local
topological quantity we use. The physical quantities are
the least significant ones, though still necessary for the
performance of the classifier.

In Section 2, we describe the flow and transport sim-
ulations used to determine particle-trace based backbones
in the DFN. Section 3 describes the graph representation,
as well as the features used to characterize nodes in the
graph. Section 4 discusses the details of the machine learn-
ing methods used, and Section 5 presents the results of these
methods. Finally, in Section 6, we discuss the implications
of our results and provide conclusions.
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2 Discrete fracture network

Discrete fracture networks (DFN) models are one common
simulation tools used to investigate flow and transport
in fractured systems. In the DFN methodology, the
fracture network and hydrological properties are explicitly
represented as discrete entities within an interconnected
network of fractures. The inclusion of such detailed
structural and hydrological properties allows DFN models
to represent a wider range of transport phenomena than
traditional continuum models [39, 40]. In particular,
topological, geometric, and hydrological characteristics can
be directly linked to physical flow observables.

We use the computational suite DFNWORKS [24] to
generate each DFN, solve the steady-state flow equations
and determine transport properties. DFNWORKS combines
the feature rejection algorithm for meshing (FRAM) [22], the
LaGriT meshing toolbox [29], the parallelized subsurface
flow and reactive transport code PFLOTRAN [31], and an
extension of the WALKABOUT particle-tracking method [33,
41]. FRAM is used to generate three-dimensional fracture
networks. LaGriT is used to create a computational mesh
representation of the DFN in parallel. PFLOTRAN is used
to numerically integrate the governing flow equations.
WALKABOUT is used to determine pathlines through
the DFN and simulate solute transport. Details of the
suite, its abilities, applications, and references for detailed
implementation are provided in [24].

One hundred generic networks, composed of circular
fractures with uniformly random orientations, are generated.
Each DFN lies within a cubic domain with sides of length
15 m. The fracture radii » [m] are sampled from a truncated
power law distribution with exponent 1 + o and upper
and lower cutoffs (r,; rg). We select a value of « = 2.6

Fig.1 a A DFN composed of
499 fractures. b Backbone
extracted from (a) using
particles trajectories where a
majority of mass transport
occurs. Inlet plane is shown on
front left; outlet plane is on rear
right

so that the distribution has finite mean and variance. The
lower cut off rg is set to one meter and the upper cut off
ry is set to 5 m. Fracture centers are sampled uniformly
throughout the domain. The networks are fairly sparse,
with an average P3; value (fracture surface area over total
volume) of 1.97 [m~!] and variance 0.03. In all networks,
at least one set of fractures connects the inflow and outflow
boundaries. This constraint removes isolated clusters that do
not contribute to flow. An example of one fracture network
is shown in Fig. 1a. On average, meshing each full network,
solving for flow, and tracking particles takes around 30 min
of wall clock time. Timing for these computations was
performed using a server that has 64 cores; 1.4 GHz AMD
Opteron(TM) Processor 6272 with 2048 KB of cache each.
Meshing and flow simulations are performed in parallel
using 16 cores. Transport is performed using a single core.

Within each network, the governing equations are
numerically integrated to obtain a steady-state pressure
field. Purely advective passive particles are tracked through
steady-state flow fields to simulate transport and their
pathlines correspond to the fluid velocity field. Details
of the flow and transport simulations are provided in the
Appendix. Particle pathlines are used to identify backbones
in the DFN, connected subsets of fractures where a
substantial portion of flow and transport occurs, using the
methods of Aldrich et al. [3]. In their method, membership
in the backbone is the result of a large amount of mass
passing through particular pathways of connected fractures.
Using this definition of backbone, the breakthrough curve,
e.g., travel time distributions, on subnetworks defined by the
backbone is not guaranteed to match the breakthrough curve
on the full network, but it does identify primary flow and
transport paths in the system. Figure 1b shows the backbone
extracted from the network shown in Fig. 1a.

@ Springer
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3 Graph representation
3.1 Graph formation

We construct a graph representation of each DFN based on
the network topology using the method described in Hyman
et al. [23]. For every fracture in the DFN, there is a unique
node in a graph. If two fractures intersect, then there is
an edge in the graph connecting the corresponding nodes.
This mapping between DFN and graph naturally assigns
fracture-based properties, both geometric and hydrological,
as node attributes. Edges are assigned unit weight to isolate
topological attributes from other attributes that could be
considered. Source and target nodes are included into
the graph to incorporate flow direction. Every fracture
that intersects the inlet plane is connected to the source
node and every fracture that intersects to the outlet plane
is connected to the target node. The inclusion of flow
direction is essential to identify possible transport locations,
which depend upon the imposed pressure gradient [36].
An example of this mapping for a three-dimensional 12-
fracture network is shown in Fig. 2. Each of the fractures
(semi-transparent colored planes) is represented as a node
(black), intersections between fractures are represented
by edges in the graph (solid black lines). The source
node is colored blue and the target node is colored
red.

Every subgraph has a unique pre-image in the fracture
network that is a subnetwork of the full network because the
mapping between the network and graph is bijective. Thus,

Fig.2 Graph representation of a 12-fracture discrete fracture network
in three dimensions. Fractures (semi-transparent colored planes) are
represented as nodes (black), intersections between fractures are
represented by edges in the graph (solid black lines). A source node
(blue) and a target node (red) are also included into the graph to include
boundary conditions and flow direction
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flow and transport simulations can be performed on these
subnetworks, and compared to results obtained on the full
networks.

3.2 Node features

The centrality of a node in a graph describes its importance
to transport across the network. Motivated by recent studies
suggesting centrality measures that can help identify regions
important in conducting flow and transport [46, 47], we
consider four such quantities as node features. Three are
global topological measures, quantifying how frequently
paths through the graph include a given node. One is a
local topological measure, giving the number of immediate
neighbors of a node. Graph properties are computed
using the NETWORKX graph software package [16]. The
topological features are supplemented with two physical
(geometric) features; fracture volume projected along the
main flow axis (from inlet plane to outlet plane) and
fracture permeability. Figure 3 provides a visualization
of a graph derived from the random DFN shown in
Fig. 1. Blue circles represent normalized feature values
using these six different features, in panels (a) through
(f). The yellow square and circle denote the source and
target. Heavy lines represent particle backbone paths in the
graphs.

3.2.1 Global topological features

— The betweenness centrality [5, 13] of a node (Fig. 3a)
reflects the extent to which that node can control
communication on a network. Consider a geodesic path
(path with fewest possible edges) connecting a node u
and a node v on a graph. In general, there may be more
than one such path: let o, denote the number of them.
Furthermore, let 0, (i) denote the number of such paths
that pass through node i. We then define, for node i,

n

1 ouv (i)
n—1n-2) MZ Ouy

uv
v=1

u;,ﬁi;év

Betweenness centrality =

ey

where the leading factor normalizes the quantity so
that it can be compared across graphs of different sizes
n. Figure 3a confirms that many backbone nodes do
indeed have high betweenness values. At the same
time, certain paths through the network that are not
part of the backbone also show high values for this
feature, reflecting that betweenness centrality considers
all paths in the graphs, and not only those from source
to target.
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Fig.3 Visualization of a graph
derived from a DFN as shown in
Fig. 1. Blue circles represent
normalized feature values using
six different features, in panels
a through f. Yellow square
denotes source, yellow circle
denotes target. Heavy lines
represent particle backbone
paths in the graphs. Note
varying extent of correlation
between particle backbone and
associated feature strength

(e) Projected volume

—  Source-to-target current flow (Fig. 3b) is a centrality

measure based on an electrical current model [7], and
assumes a given source and target. Imagine that one
unit of current is injected into the network at the source,
one unit is extracted at the target, and every edge has
unit resistance. Then, the current-flow centrality at a
node is equal to the current passing through it. This is
given by Kirchhoff’s laws, or alternatively in terms of
the graph Laplacian matrix L = D — A, where A is
the adjacency matrix for the graph and D is a (diagonal)
matrix specifying node degree: D;; = ) j Ajj. Letting

(f) Permeability

L™ denote the Moore-Penrose pseudoinverse of L, s the
source node, and ¢ the target node, then for node i we
define

n
Current flow =~ Aj|(Li—LT)—(Li—L])| @
j=1
Current-flow centrality is also known as random-walk
centrality [37], since the same quantity measures how
often a random walk from s to 7 passes through i. Unlike
betweenness centrality, the current-flow centrality is
zero on any branch of the graph outside of the central

@ Springer
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core. We therefore expect high current-flow values
to correlate with nodes that have large influence on
source-to-target transport.

—  Source-to-target simple paths (Fig. 3c) is a centrality
measure that counts simple (non-backtracking) paths
crossing the graph from source s to target r. Let my,
denote the number of such paths, and 7 (i) denote
the number of those passing through node i. We then
define, for node i,

Tyt (i)

TTst

Simple paths = 3)
where normalization by w5, allows comparing values
of simple path centrality across different graphs. Due
to the exponential proliferation of possible paths, we
limit our search to paths with 15 nodes or less. Beyond
15, the effect on source-to-target simple path centrality
is negligible. Figure 3c illustrates that nodes with high
simple path centrality are more likely to lie on backbone
paths than are nodes with high betweenness centrality
in Fig. 3a. However, simple path centrality also fails to
identify one isolated backbone path that is disjoint from
the others.

3.2.2 Local topological feature

—  Degree centrality (Fig. 3d) is a normalized measure of
the number of edges touching a node. For node i,

1 n
Degree centrality = P Z Ajj. (@]
j=1

Nodes with high degree centrality tend to be concen-
trated in the core of the network. Conversely, nodes with
low degree centrality are often in the periphery or on
branches that cannot possibly conduct significant flow
and transport. Physically, degree centrality of a fracture
measures the number of other fractures that intersect
with it.

3.2.3 Physical features

We supplement the four topological features with two
features describing physical properties of fractures.

—  Projected volume (Fig. 3e) measures the component of
a fracture’s volume oriented along the direction of flow
from inlet to outlet plane. Let fracture i have volume
V; and orientation vector O; (unit vector normal to
the fracture plane). Taking flow to be oriented along
the x axis, the projected volume is expressed by the
projection of O; onto the yz plane:

Projected volume = V;,/(0:)% 4 (0;)2. 3)
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Figure 3e shows similarities between this feature and
degree centrality, but also some fractures where one
feature correlates more closely with the backbone than
the other.

—  Permeability (Fig. 3f) measures how easily a porous
medium allows flow to pass therein. Given the aperture
size b; of fracture i, the permeability is expressed as

» b2
Permeability = é 6)

The permeability of a fracture, which is nonlinearly
related to its volume, is a measure of its transport
capacity. As illustrated in Fig. 3, it displays similarities
to both degree centrality and projected volume, with
backbone fractures almost systematically having high
permeability values (but the converse holding less
consistently).

3.3 Correlation of feature values

As is seen in Fig. 3, the feature values vary widely from
one node to another, in ways that we aim to manipulate in
order to generate subnetworks. Figure 4 shows correlation
coefficients for pairs that include the particle backbone
and the six features that we have chosen. That there
are non-negligible correlations between the backbone and
these features suggests that they are relevant ones for
classification, although clearly no single feature is sufficient
in itself. The correlation coefficients indicate that features
tend to cluster naturally into the three categories above.
The first three features, which are the global topological
ones (betweenness, current flow, and simple paths), have

£ wn %] (_E 2
F § 3 £ £ 8 =2
- s = 3 o kS 5 1.0
QO [ c o [ =1 ©
o 159 @ = 19 = 9]
F=} 2 = 2 S 2 =
s o 5 £ @ 3 ]
Particle backbone
0.8
Betweenness
Current flow 0:7
Simple paths 0.6
Degree centrality
0.5
Projected volume
0.4

Permeability

Fig.4 Heat map displaying correlations among the particle backbone
and the six features used
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significant mutual correlations among them. The same
is true for the physical features (projected volume and
permeability), which also exhibit some clustering with the
related local topological feature (degree centrality). The
latter correlations are consistent with our feature definitions
above.

While we also considered additional centrality measures
studied in the literature [46, 47], such as closeness, eccen-
tricity, and eigenvector centrality, we found that those exhib-
ited much weaker correlations with the particle backbone.
The choice of the six features above was motivated through
cross-validation tests, where adding centrality measures did
not improve classification performance while removing any
of them degraded performance.

4 Classification methods

In this section, we explain how we evaluate classification
performance, briefly describe our two machine learning
algorithms (random forest and support vector machines),
and our process for parameter selection. Detailed descrip-
tions of the methods are provided in the Appendix. Both
algorithms are general-purpose supervised learning meth-
ods suitable for geometric as well as non-geometric fea-
tures. Given a set of features and class assignment for some
observations, supervised learning algorithms try to “learn”
the underlying function that maps features to classes. Those
observations are the training set. Once learned, the function
can then be used to classify new observations. In our study,
we use as observations the nodes (fractures) from 80 graphs
as a training set. We then test the function using nodes
from 20 graphs as a test set. Both algorithms are imple-
mented using the scikit-learn machine learning package
in python, with the functions RandomForestClassifier and
SVC.

4.1 Performance measures

There are a number of challenges in evaluating classification
performance. Our problem has a large class imbalance:
only about 7 percent of nodes in the training set are in
the particle backbone. A classifier could simply assign all
nodes to the non-backbone class, and still achieve an overall
accuracy of 93%. Moreover, our approach departs from
more conventional machine learning methodology in that
our ultimate objective is not necessarily a perfect recovery
of the backbone. We train on the particle backbone in order
to identify a subset of fractures that share its characteristics,
thereby reducing the full network to a subnetwork with
analogous flow behavior. We then validate the flow behavior
using the breakthrough curve (BTC), which describes the
distribution of times for particles to pass through the

network. For these reasons, performance measures must be
interpreted with care.

For straightforward backbone prediction, we may define
a positive classification of a node as being an assignment
to the backbone class, and a negative classification as
being an assignment to the non-backbone class. True
positives (TP) and true negatives (TN) represent nodes
whose backbone/non-backbone assignment matches that
of the labeled training data. False positives (FP) and
false negatives (FN) represent nodes whose backbone/non-
backbone assignment is opposite that of the labeled training
data. One measure of success is the TP rate. Precision (p)
and recall (r) represent two kinds of TP rates:

TP -
P=TpPLFP
TP
Fr=— ®)
TP+ FN

Precision is the number of true positives over the total
number that we classify as positive, whereas recall is
the number of true positives over the total number of
actual positives. These values give an understanding of how
reliable (precision) and complete (recall) our results are.

There is a tradeoff between precision and recall. This
can be seen in the behavior of one of the simplest possible
forms of classification: thresholding according to a single
feature. Consider a classifier that labels as backbone all
fractures with nonzero current flow. The process would
resemble the dead-end fracture chain removal method
common in the hydrology literature, but more extreme in
that it would eliminate all dead-end subnetworks. This gives
perfect (100%) recall, since all fractures in the particle
backbone necessarily have nonzero current flow, and 15%
precision, as it reduces the network to approximately half
of its original size (about 7% of which were TP). Now
imagine increasing the threshold, so as to lower the number
of positive assignments. This will reduce FP, thereby
increasing the precision. However, it will also increase FN,
reducing the recall. In this way, we can travel along a
precision/recall curve, shown in Fig. 5, that has perfect
recall as one extreme and perfect precision as the other.
If there existed a threshold value at which the classifer
recovered the training data perfectly, the precision/recall
curve would touch the upper-right corner of the figure:
100% precision and 100% recall. One typically wants
classifiers that come as close to that ideal as possible.

In order to quantify the tradeoff shown in Fig. 5, one may
introduce a utility function

ua(q) = ap(q) + (I —a)r(q), ®

where o € [0, 1] specifies the relative weight of precision
vs. recall, q denotes a vector of hyperparameter values
used for tuning the classifier, and p(q) and r(q) denote

@ Springer



702

Comput Geosci (2018) 22:695-710

1.0

0.8

0.6 1

Recall

0.4

0.2

0.0 w ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

Precision

Fig. 5 Precision/recall curve for current-flow thresholding as a
classifier. As threshold value increase, classifier moves from perfect
recall to perfect precision. Ideally, precision/recall curve would touch
upper-right corner for strongest classifier performance

the precision and recall obtained by the classifier for those
parameter values. Thus, u,(q) is determined purely by
recall when o« = 0, and purely by precision when o = 1. In
the example above, q would be a scalar quantity ¢ denoting
the current-flow threshold value. In general, for a given
weight o, we may find the hyperparameter values q that
maximize uy(q). The most straightforward algorithm for
doing so is grid search cross-validation, which performs an
exhaustive search over a given range of q values, evaluating
p(q) and r(q) based on subsampling of the training data.
This procedure avoids overfitting that would occur from
validation using only the test data.

While the tradeoff between precision and recall is related
to the tradeoff between network reduction and accuracy, it
is not identical. Network reduction is measured by the ratio

TP+FP_r TP+FN_rﬂ
o P

10)

Fractures remaining =

n P n

where 7 is the number of fractures in the full network and g
is the proportion of fractures that are in the backbone. Low
recall and high precision therefore yield small subnetworks.
Accuracy is measured by the agreement between the BTC
of the subnetwork and of the full network. High accuracy
correlates with high recall: we train our classifier on the
particle backbone because it is a valid network reduction
from the perspective of characterizing where the majority
of flow, and thus transport, occurs. But it is only one of
many valid reductions. Ideally, one could optimize accuracy
by computing the BTC for the subnetwork predicted with
each choice of hyperparameters q in our grid search, and
comparing with the full network’s BTC. Unfortunately, such
a framework is computationally infeasible, since meshing a
DEFN, solving for flow and transport requires tens of minutes
of wall clock time for each set of q values. Consequently,
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in place of high accuracy, we aim for high (though not
necessarily perfect) recall. Precision is less essential: false
positives increase the size of the predicted subnetwork, but
for a small backbone (8 = 0.07), even low precision allows
for significant network reduction.

4.2 Random forest

A random forest [17, 18] is constructed by sampling from
the training set with replacement, so that some data points
may be sampled multiple times and others not at all.
Those data points that are sampled are used to generate a
large collection of decision trees, each of which outputs a
classification based on feature values. Those data points that
are not sampled are run through the decisions trees. A test
data point is then classified by having each tree “vote” on
its class. This leads not only to a predicted classification,
but also to a measure of certainty (the fraction of trees that
voted for it) as well as to an estimate of the importance of
each feature for the class assignment [8]. That final estimate
is particularly useful when the features consist of quantities
that measure different aspects of node centrality. Further
discussion of the random forest method is provided in the
Appendix.

In order to identify the hyperparameters of random
forest that affect our results most significantly, we use
the grid search cross-validation method described above,
implemented with the GridSearchCV function in scikit-
learn. We aim for high recall (low «, in Eq. 9), and find the
greatest sensitivity to a hyperparameter that sets the minimal
number of samples in a leaf node, to limit how much a
decision tree branches. This is the sole hyperparameter for
our classifier, so the vector q in Eq. 9 reduces to a scalar
quantity ¢g. Adjusting its value prevents overfitting, which
in the context of unbalanced classes could cause practically
none of the feature space to be assigned to the minority
class [9].

4.3 Support vector machines

Support vector machines (SVM) separate high-dimensional
data points into two classes by finding an appropriate hyper-
plane. Based on the generalized portrait algorithm [50] and
subsequent developments in statistical learning theory [49],
the current version of SVM [10] uses kernel methods [6]
to generalize linear classifiers to nonlinear ones. These
are discussed further in the Appendix. Kernel methods
enable SVM to perform well when certain feature vari-
ables are highly correlated or even unimportant to the class
assignment [26], and help prevent overfitting. We therefore
enlarge our feature space for SVM by ranking the values
of each feature on the nodes of a given graph. For a given
feature, if n nodes have feature values fi, ..., f,, then we
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define ranked features f] ey fn whose values are given by

the order statistics of f,i.e.,

fi=1if fi =min{fi,..., fu}, (11)
fi=nif fi = max{fi,..., fu}, (12)

and generally, the ranked feature ﬁ = k if the “raw” feature
fi is equal to the kth order statistic f(x). We supplement the
collection of six raw features discussed in Section 3.2 with
the six corresponding ranked features, resulting in a total of
12 features.

As with random forest, we use grid search cross-
validation to identify and optimize crucial hyperparameters
in SVM. We find the most important of these to be the
penalty parameter, a regularization coefficient that controls
the strictness of the decision boundary. When the penalty
is large, SVM imposes a hard (rough) boundary in the
training data, at the risk of overfitting. When the penalty
is small, SVM allows a smoother boundary and more
misclassification among the training data. Because of our
class imbalance, we assign different penalty values for
each class, so that the classifier more strictly bounds
the (minority) backbone nodes than the (majority) non-
backbone nodes [38]. These quantities form the two
hyperparameters (q in Eq. 9) for our classifier. In this way,
we can simultaneously prevent overfitting the majority class
and “overlooking” points in the minority class. By adjusting
the balance of penalty values, we control how likely the
classifier is to assign a node to the backbone.

5 Results

We used a collection of 100 graphs. 80 were chosen as
training data, and 20 were chosen as test data. We illustrate
certain results, including breakthrough curves, on the DFN
shown in Fig. 1. Other results are based on the entire test
set, which consists of a total of 9238 fractures, 651 of which
(7.0%) are in the particle backbone and 8587 of which
(93%) are not. The total computation time to train both RF
and SVM was on the order of a minute, negligible compared
to the time to extract the particle backbone needed for
training. Once trained, the classifier ran on each test graph
in seconds.

5.1 Classifiers

We implemented random forest using the RandomForest-
Classifier function in scikit-learn, on the six features
described in Section 3.2. Based on cross-validation with
the function GridSearchCV, we found default hyper-
parameter values to be sufficient for achieving high
recall, except as follows: 250 trees (n_estimators=250);
best split determined by binary logarithm of number

of features (max_features=log2); information gain as the
quality measure for a split (criterion="‘entropy’); vot-
ing weights inversely proportional to class frequency
(class_weight= ‘balanced_subsample’). We varied the min-
imal number of training samples in a leaf node
(min_samples_leaf’) to adjust the tradeoff between recall and
precision. Table 1 shows the results for a sample of four dif-
ferent hyperparameter values; one can also explicitly find
the value that maximizes the utility function u,(g) for a
sample of different « values, using GridSearchCV. Since the
full particle backbone accounts for only 7% of the fractures
in the test set, we see that even classifiers with relatively low
precision can reduce the network significantly.

Random forest also provides a quantitative estimate of
the relative importance of each of the six features described
in Section 3.2, based on how often a tree votes for it. Using
the RF(30) model on our 80 training graphs, we find the
feature importances shown in Fig. 6. The source-to-target
current flow, source-to-target simple paths, and betweenness
centralities are the most important features, followed by
node degree, and followed finally by permeability and
projected volume. Thus, as with the feature correlations
shown in Fig. 4, the feature importances cluster into three
natural groups. Global topological features have the greatest
importance, local topological features have significant
but lower importance, and physical features play only a
small role in classification. In contrast with SVM, the
performance of random forest does not benefit from using
additional features such as ranked features. The inherent
bootstrapping of random forest enables strong classification
performance even with a relatively limited number of
features.

We implemented SVM using the SVC function in
scikit-learn, on the 12 features made up of the six raw
features described in Section 3.2 along with their ranked
counterparts. We chose penalty value pairs (class_weight,
often called C in the literature [10, 38]) for the backbone
and non-backbone class, which we adjusted in order to vary
precision and recall. Table 2 shows results for a sample of
four different pairs of values. Similar to RF, one could find
value pairs q that maximize the utility function u,(q) for

Table 1 Random forest classifiers labeled by the min_samples_leaf
parameter value, controlling how much a decision tree can branch

Classifier ~ Precision (%) Recall (%)  Fractures remaining (%)
RF(1400) 18 90 36
RF(30) 26 75 21
RF(15) 30 65 15
RF(1) 58 20 2.5

Percentages for precision, recall, and fractures remaining in network
are calculated over all 20 graphs in the test set
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Fig. 6 Relative importances of features based on training data for
random forest

a sample of different « values, by using the GridSearchCV
cross-validation function. All other parameters were set to
their default values, which include a radial kernel (closed
decision boundary).

5.2 Validation

In order to evaluate the quality of our classification results,
we illustrate two cases on the DFN from Fig. 1. In Fig. 7a,
we visualize the result of our classifier with the highest
recall and lowest precision, SVM(0.90,0.054). Most of the
nodes in the particle backbone are classified as positive.
The few false negatives (FN) are near the source, and are
primarily fractures intersecting the source plane where high
particle concentrations accumulate. False positives (FP) are
far more prevalent, forming many connected source-to-
target paths that are not in the particle backbone. In spite
of these, the reduced network identified by the classifier
contains only 40% of the original fractures.

In Fig. 7b, we visualize the result of our classifier with
the highest precision and lowest recall, RF(1). While we
see almost no false positives (FP), most of the nodes in the
particle backbone are missed. The false negatives (FN) near
the source are not necessarily of great concern, as these
simply represent the inlet plane, but only one connected path

Table 2 SVM classifiers labeled by the class_weight parameter pair
values, specifying misclassification penalties for the backbone and
non-backbone classes

Classifier Precision (%) Recall (%) Fractures remaining (%)
SVM(0.90,0.054) 17 96 39
SVM(0.90,0.063) 19 90 34
SVM(0.70,0.070) 23 78 24
SVM(0.70,0.190) 44 46 7.3

Percentages for precision, recall, and fractures remaining in network
are calculated over all 20 graphs in the test set
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Fig.7 Extreme cases of classification results: a SVM(0.90,0.054) with
high recall and low precision (40% of network remaining), showing
many false positives (FP) and relatively few false negatives (FN) and b
RF(1) with low recall and high precision (2% of network remaining),
showing many false negatives (FN) and relatively few false positives
(FP). Solid lines show predicted paths from source to target. Dashed
lines show particle backbones

exists between source and target. On some other networks in
the test set, the classifier does not even generate a connected
source-to-target path at all. The drastic reduction of network
size, to 2% of the original fractures, results in too much loss
of physical relevance.

It is instructive to consider the full range of accessible
precision and recall values for the classifiers above, as
we did for the simple current-flow thresholding method
in Section 4. Given a trained classifier with given
hyperparameter values q, one can modify it to give more
or fewer positive assignments, effectively changing the
percentage of votes needed for a positive classification (in
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the case of RF) or shifting the decision boundary (in the
case of SVM). Note that this is not the same as generating
different classifiers from the training data, as in Tables 1
and 2. Figure 8 shows precision/recall curves generated in
this way for the two classifiers used in Fig. 7, along with the
current-flow curve as a baseline comparison. Marker values
represent the precision/recall values seen in Tables 1 and 2
for the unmodified classifiers. It appears at first that current-
flow thresholding has the strongest performance below
about 60% recall. However, as with RF(1) above, these
are nonphysical results: it generates connected subnetworks
only for the highest recall values, where it significantly
underperforms RF and SVM.

As discussed earlier, our primary objective is not
reconstructing training data, but rather reducing network
size while maintaining crucial flow properties. These
properties are measured by the breakthrough curve (BTC),
which gives the distribution of simulated particles passing
through the network from source plane to target plane in a
given interval of time. This is a common quantity of interest
in subsurface systems, where one needs to predict the travel
time distribution through the fracture network in order to
evaluate the performance of systems such as hydraulic
fracturing, nuclear waste disposal or gas migration from
a nuclear test. We would like the BTC for our reduced
networks to match that of the full network in a number of
respects, notably the shape of the cumulative distribution
function and the fraction of particles that reach the target
plane after a given time.

Figure 9 shows the BTC on this network for a
representative sample of four of our classifiers. As a
comparison, we also show the BTC for thresholding on
nonzero current flow, as well as for the full network and
for the particle backbone. While current-flow thresholding
gives a very close match, it only reduces the network to
52% of its original size. SVM(0.9,0.054) and RF(30) reduce

1.0
' A SVM(0.9,0.054)
0.8 3 H  RF(1)
. —.— Current flow
— 0.6
©
(@]
(0]
< 0.4-
0.2 1
0.0 - - -
0.0 0.2 0.4 0.6 0.8 1.0
Precision

Fig. 8 Precision/recall obtainable with one SVM and one RF
classifier, along with current-flow thresholding for comparison.
Markers indicate performance of unmodified classifier
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Fig.9 Predictions for the DFN from Fig. 1, visualized as BTC (cumu-
lative distribution function) produced by DEFNWORKS. Representative
results from four models are given, together with current-flow thresh-
olding, full network and particle backbone. Legend shows model
parameters and size of reduced network

the network to 40 and 21%, while still providing acceptable
matches. The median breakthrough time for RF(30) deviates
from that of the full network by approximately the same
amount as the particle backbone, though in the opposite
direction: it underestimates rather than overestimates the
breakthrough time.

Finally, in order to quantify the tradeoff between
BTC agreement and network reduction, we calculate the
Kolmogorov-Smirnov (KS) statistic, giving a measure of
“distance” between two probability distributions. The KS

Table 3 Results of applying current-flow thresholding, four RF and
four SVM models to the DFN from Fig. 1

Classifier Fractures remaining(%) KS

Current flow 52 0.03
SVM(0.90,0.054) 40 0.10
RF(1400) 38 0.12
SVM(0.90,0.063) 35 0.12
SVM(0.70,0.070) 22 0.25
RF(30) 21 0.26
RE(15) 16 0.35
SVM(0.70,0.190) 5.6 0.59
RF(1) 2.0 0.68

Fractures remaining in network are those identified as positive by
classifier. Values differ slightly from results over entire test set, due to
graph-to-graph fluctuations. KS statistic represents distance between
breakthrough curve on reduced network and on full network
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statistic is independent of binning, and most sensitive to
discrepancies close to the medians of the distributions,
making it particularly suitable for comparing BTCs. The
results are summarized in Table 3. They confirm that
the classifier with highest recall, SVM(0.90,0.054), which
reduces the network to 40% of its original size, has a BTC
close to that of the full network (KS statistic 0.10).

6 Discussion and conclusions

We have presented a novel approach to finding a high-
flow subnetwork that does not require resolving flow in
the network, and that takes minimal computational time.
The method involves representing a DFN as a graph whose
nodes represent fractures, and applying machine learning
techniques to rapidly predict which nodes are part of the
subnetwork. We used two supervised learning techniques:
random forest and support vector machines. Once these
algorithms have been trained on flow data from particle
simulations, they successfully reduce new DFNs while
preserving crucial flow properties. Our algorithms use
topological features associated with nodes on the graph, as
well as a small number of physical features describing a
fracture’s properties. We consider each node as a point in the
multi-dimensional feature space, and classify it according to
whether or not it belongs to the subnetwork.

By varying at most two parameters of our classifiers, we
are able to obtain a wide range of precision and recall values.
These yield subnetworks whose sizes range from 40% down
to 2% of the original network. For reductions to as little
as 21% of the original size, the resulting breakthrough
curve (BTC) displays good agreement with that of the
original network. We therefore obtain significantly reduced
networks that are useful for flow and transport simulations
and generated in seconds. By comparison, the computation
time needed to extract the particle backbone is on the
order of an hour. We use cross-validation to identify the
crucial classifier parameters, and show how to use it to
tune these parameters, optimizing precision for fixed recall
or vice-versa. To the extent that recall approximates BTC
agreement, this can result in maximal network reduction for
a given level of accuracy, or maximal accuracy for a given
level of network reduction.

In addition to the classification results, the random forest
method gives a set of relative importances for the features
used. These importances are determined by permuting the
values of a given feature and observing the effect this has
on classification performance. We have found that features
based on global topological properties of the underlying
graph were significantly more important than those based
on geometry or physical properties of the fractures. This
reinforces previous observations that network connectivity
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is more fundamental to determining where flow occurs in
a network than are geometric or hydraulic properties for
sparse networks [21]. Quantitatively, the most important of
our global topological features is source-to-target current
flow, which measures how much of a unit of current injected
at the source (representing the inlet plane of the DFN)
passes through a given node of the graph.

Indeed, classifying fractures only based on whether
they conduct nonzero current flow yields in itself a
reasonable graph reduction of around 50%, with a BTC that
very closely matches the original network. However, this
does not generalize to a method allowing arbitrary graph
reduction: raising the current-flow threshold above zero
reduces the number of fractures, but results in subnetworks
that are disconnected and therefore nonphysical. By
contrast, when we use the full set of classification features,
we consistently realize a connected subnetwork for all but
the lowest recall values. It is somewhat remarkable that this
occurs in spite of our classifiers never explicitly making use
of source-to-target paths in the graph.

In principle, the performance of classifiers in this frame-
work depends on the particular geometric and hydrological
properties of the fracture network generation parameters
and the inferred topological structures. Changing generation
parameters will not only result in different geometries, but
also different topological properties of the network realiza-
tions. Depending on the prescribed distributions of fracture
radii, network density, fracture shape, fracture intensity, etc.,
what features should be considered in the classifier might
also change. Thus, it is imperative that the classifiers must
be trained using the particular ensemble in which they want
to predict the subnetworks.

Finally, some evidence suggests that if one could in fact
classify paths rather than nodes, results would improve fur-
ther. We are currently exploring a classification method
that initially labels fractures at the inlet and outlet planes,
and then successively attempts to propagate positive iden-
tifications through the network, thereby forming source-to-
target paths. The objective of this method is to generate
subnetworks that are far closer to the particle backbone
itself. Thus, the training data would be used not merely
to guide the classifier toward useful network reductions,
but rather in the more conventional machine learning set-
ting of providing ground truth to be reproduced. Pre-
liminary tests suggest that such a method may consider-
ably boost precision and recall simultaneously, generating
subnetworks whose BTC closely matches the full net-
work but whose size is not much larger than the particle
backbone.
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Appendix: Flow equations and transport
simulations

We assume that the matrix surrounding the fractures is imper-
meable and there is no interaction between flow within
the fractures and the solid matrix. Within each fracture,
flow is modeled using the Darcy flow. The aperture within
each fracture is uniform and isotropic, but they do vary
between fractures and are positively correlated to the frac-
ture size [21]. Locally, we adopt the cubic law [52] to
relate the permeability of each fracture to its aperture. We
drive flow through the domain by applying a pressure dif-
ference of 1MPa across the domain aligned with the x
axis. No flow boundary conditions are applied along lateral
boundaries and gravity is not included in these simulations.
These boundary conditions along with mass conservation
and Darcy’s law are used to form an elliptic partial differen-
tial equation for steady-state distribution of pressure within
each network

V.(kVP)=0. (13)

Once the distribution of pressure and volumetric flow
rates are determined by numerically integrating (13) the
methodology of Makedonska et al. [33] and Painter et
al. [41] and are used to determine the Eulerian velocity field
u(x) at every node in the conforming Delaunay triangulation
throughout each network.

The spreading of a nonreactive conservative solute
transported is represented by a cloud of passive tracer
particles, i.e., using a Lagrangian approach. The imposed
pressure gradient is aligned with the x axis and thus the
primary direction of flow is in the x direction. Particles are
released from locations in the inlet plane x¢ at time r = 0
and are followed until the exit the domain at the outlet
plane x; The trajectory x(¢; a) of a particle starting at a
on Xo is given by the advection equation, X(l.; a) = v(t; a)
with x(0; a) = a where the Lagrangian velocity v(¢; a) is
given in terms of the Eulerian velocity u(a) as v(¢;a) =
u[x(z; a)]. The mass represented by each particle m(a) and
the breakthrough time at the outlet plane, t(xz;a) of a
particle that has crossed the outlet plane, x; = (L, y, z) is

can be combined to compute the total solute mass flux ¥ (¢)
that has broken through at a time ¢,

W(t,xr) = %fdm(a)a[t —t(xz,a)], (14)
Qq

where 2, is the set of all particles. Here mass is distributed
uniformly amongst particles, i.e., resident injection is
adopted. For more details about the injection mode see
Hyman et al. [25].

Algorithm description
Random forest

The random forest method is based on constructing a
collection of decision trees. A decision tree [44] is a tree
whose interior nodes represent binary tests on a feature and
whose leaves represent classifications. An effective way of
constructing such a tree from training data is to measure
how different tests, also called splits, separate the data.
The information gain measure compares the entropy of the
parent node to the weighted average entropy of the child
nodes for each split. The splits with the greatest information
gain are executed, and the procedure is repeated recursively
for each child node until no more information is gained, or
there are no more possible splits. A limitation of decision
trees is that the topology is completely dependent on the
training set. Variations in the training data can produce
substantially different trees.

The random forest method [17, 18] addresses this
problem by constructing a collection of trees using
subsamples of the training data. These subsamples are
generated with replacement (bootstrapping), so that some
data points are sampled more than once and some not at
all. The sampled “in-bag” data points are used to generate
a decision tree. The “out-of-bag” observations (the ones not
sampled) are then run through the tree to estimate its quality
[30]. This procedure is repeated to generate a large number
(hundreds or thousands) of random trees.

To classify a test data point, each tree “votes” for a
result. This provides not only a predicted classification,
determined by majority rule, but also a measure of certainty,
determined by the fraction of votes in favor. The use
of bootstrapping effectively augments the data, allowing
random forest to perform well using fewer features than
other methods. The category with more votes is assigned to
the new observation. The idea of random decision forests
originated with T. Ho in 1995. Ho found that forests of trees
partitioned with hyperplanes can have increased accuracy
under certain conditions [17]. In a later work [18], Ho

3
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determined that other splitting methods, under appropriate
constraints, yielded similar results.

Additionally, random forest provides an estimate of
how important each individual feature is for the class
assignment. This is calculated by permuting the feature’s
values, generating new trees, and measuring the “out-of-
bag” classification errors on the new trees. If the feature
is important for classification, these permutations will
generate many errors. If the feature is not important, they
will hardly affect the performance of the trees.

Support vector machines

Support vector machines (SVM) use a maximal margin
classifier to perform binary classification. Given training
data described by p features, the method identifies boundary
limits for each class in the p-dimensional feature space.
These boundary limits, which are (p — 1)-dimensional
hyperplanes, are known as local classifiers, and the distance
between the local classifiers is called the margin. SVM
attempts to maximize this margin, making the data as
separable as possible, and defines the classifier as a
hyperplane in the middle that separates the data into two
groups. The data points on the boundaries are called support
vectors, since they “support” the limits and define the shape
of the maximal margin classifier.

Formally, a support vector machine attempts to construct
a hyperplane,

(a,x;)) +b=0, (15)

that partitions data points X; into disjoint sets, for i €
{1, ..., n}. To define the hyperplane we must determine the
unknown coefficients a = (ay, ..., ap) and b. SVM seeks
to determine a hyperplane that separates the two sets A and
B and leaves the largest margin.

Let (a,x;) + b = =1 be the normalized equations for
the boundaries of the hyperplane margin. Data points x; on
either side of the margins of the hyperplane will lie in either
A and B depending upon whether they satisfy either

(a,x;) +b > 1 or (a,x;) +b < —1. (16)

Define an indicator function S(x) by

1 xeA

-1 xeBhB an

Sx) = {
and set S; = S(x;). Then we can combine (16) into a single
inequality ((a,x;) 4+ b)S; > 1 for all x;; with equality
holding for support vectors, the nearest points to the margin.

In most cases the sets A and B may only be close
to linearly separable. To account for this possibility we
introduce slack variables & > 0,

(a,x)+b)Si=1-§ Vi, (18)

@ Springer

that allows x; corresponding to & > 0 to be incorrectly
classified with the &; being used as a penalty term. Distances
p1 and p; from the coordinate origin to the margin boundary
are given by p1 = —(b + 1)/l|all and p = —(b — D)/|la]
where ||a|| is the Euclidean length of a. The margin width
is the distance between these two lines d = p» — p; =
2/|\al|. We seek to maximize d or, equivalently, minimize
llall, over the set of training data (yi,...,Y¥Ym), subject
to the linear constraints (18). Typically one works with
the Lagrangian formulation of the constrained optimization
problem. The dual Lagrangian problem is to minimize the
objective function

1 m
LG b.& y.8=lal’ =) vl y)+b)S;—1+]
j=1

+CY & = 8jE (19)
j=1 j=1

subject to the non-negativity constraints of the Lagrange
multipliers y;,6;, and §; > 0 and obtain a and b. The
penalty, or margin parameter, C is a regularization term
that controls how many points are allowed to be mislabeled
in the SVM hyperplane construction; smaller values of C
allow for more points to be mislabeled. A solution to this
optimization problem defines a and b. The SVM classifier
is then given by the sign of the decision function,

x (xi) = sgn((a, x;) + D). (20)

SVM falls into the category of kernel methods, a
theoretically powerful and computationally efficient means
of generalizing linear classifiers to nonlinear ones. For
instance, on a two-dimensional surface (p = 2 features),
instead of the line described by Eq. 15, we can choose a
polynomial curve or a radial loop. Equation 20 may then be
written in the form

m
xxi) =sgn |0+ Y a;jK(xi.y)) |, 1)
j=1
where K(x;,y;) is an appropriate kernel function of x;
and training point y;. Radial kernels often provide the
best classification performance, but at higher computational
costs.
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