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Abstract� Vehicle recognition and classification have broad applica-
tions, ranging from traffic flow management to military target identifica-
tion. We demonstrate an unsupervised method for automated identifica-
tion of moving vehicles from roadside audio sensors. Using a short-time
Fourier transform to decompose audio signals, we treat the frequency
signature in each time window as an individual data point. We then use
a spectral embedding for dimensionality reduction. Based on the leading
eigenvectors, we relate the performance of an incremental reseeding algo-
rithm to that of spectral clustering. We find that incremental reseeding
accurately identifies individual vehicles using their acoustic signatures.
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� Introduction

Recognizing and distinguishing moving vehicles based on their audio signals are
problems of broad interest. Applications range from traffic analysis and urban
planning to military vehicle recognition. Audio data sets are small compared to
video data, and multiple audio sensors can be placed easily and inexpensively.
However, challenges arise due to equipment as well as to the underlying physics.
Microphone sensitivity can result in disruption from wind and ambient noise.
The Doppler shift can make a vehicle’s acoustic signature differ according to its
position.
In order to interpret acoustic signatures, one must extract information con-

tained within the raw audio data. A natural feature extraction method is the
short-time Fourier transform (STFT), using time windows large enough to carry
sufficient frequency information but small enough to localize vehicle events.
STFT has been used previously for classifying cars vs. motorcycles with principle
component analysis [13], for characterizing �-neighborhoods in vehicle frequency
signatures [14], for vehicle classification based on power spectral density [1],
and for vehicle engine identification [8,12]. Other related feature extraction
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approaches have included the wavelet transform [1,2] and the one-third-octave
filter bands [10].
Our study is motivated by previous work that uses a spectral embedding

approach to identify different individual vehicles [11]. Representing each time
window as an individual data point, we define a similarity measure between two
points based on the cosine distance between their sets of Fourier coefficients, and
then cluster according to the symmetric normalized graph Laplacian [9]. In this
paper, we relate the eigenvectors of the Laplacian to a recently proposed clus-
tering method, incremental reseeding (INCRES) [3], that iteratively propagates
cluster labels across a graph. We compare the performance of INCRES with
spectral clustering on the vehicle audio data. We find that both are promising
unsupervised methods for vehicle identification, with INCRES correctly cluster-
ing 91.7� of the data points in a sequence of passages of three different vehicles.

2 Algorithms

Our clustering algorithms are based on the use of spectral embedding for dimen-
sionality reduction [11]. Consider a signal of length n, with feature vector
x� ∈ �

m associated with data point i ∈ �1� . . . � n}. A spectral embedding repre-
sents data as vertices on a weighted graph, with edge weights Sij expressing a
similarity measure between data points i and j. The graph is encoded using the
symmetric normalized graph Laplacian matrix [9]

Ls = I−D�1�2SD�1�2 (1)

where D is a diagonal matrix with Dii =
�

j Sij .
We use this embedding for vehicle identification with two related clustering

methods: spectral clustering, and a recently developed incremental reseeding
approach [3].

2.1 Spectral Clustering

The eigenvectors of Ls associated with the leading nontrivial eigenvalues
λ2� . . . λk form a (k − 1)-dimensional approximation to x�. The approximation
is justified when the spectral gap |λk+1 − λk| is large, which occurs when the
data naturally form k clusters [9]. Spectral clustering uses k-means to cluster
this �

k�1 projection of the data.

2.2 Incremental Reseeding �INCRES) Algorithm

The INCRES algorithm [3] is a diffusive method that propagates cluster labels
across the graph specified by Ls. The approach (Algorithm 1) is incremental:
it plants cluster seeds among nodes, grows clusters from these seeds, and then
reseeds among the growing clusters.
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Algorithm 1. INCRES

1: Input Similarity matrix �, number of clusters k, number of iterations s

2: Initialize Randomly partition data points into k clusters
3: for i = 1 to s do

4: PLANT: Randomly choose certain points in each cluster as see�s

5: GROW: Apply Laplacian L� to matrix of seed labels
6: HARVEST: Assign data points to cluster with largest label value
7: end for

To elaborate on the algorithm, an indicator matrix of seed labels is con-
structed in the PLANT step: Uij = 1 if point i is picked as a seed for cluster j,
and 0 otherwise. By applying the Laplacian in the GROW step, LsU becomes
a real-valued matrix representing the seeds propagating to neighbors according
to similarity. Finally, the HARVEST step updates the assignment of data points
to clusters, by finding for each point i the cluster j maximizing the propagated
label matrix element (LsU)ij . The process then repeats, with new seeds drawn
from the updated clusters.
Since the process of seed propagation is governed by the graph Laplacian,

INCRES is closely connected with spectral clustering. Eigenvectors of Ls are
organized hierarchically: the second eigenvector separates data into two clusters
at the coarsest resolution, the third eigenvector identifies a third cluster at a finer
resolution, and so on. An application of INCRES with parameter k propagates
seeds with k different labels through the graph, resulting in k clusters governed
by the spectral properties of Ls.
To illustrate the relation between the two algorithms, consider a similarity

matrix Sij given in block matrix form, with added “salt and pepper” noise. This
is shown in Fig. 1, with lighter colors representing greater similarities. Figure 2
shows the second and third eigenvectors of Ls, along with the results of INCRES
using k = 2 and k = 3. The binary clustering results of both methods split the
data into the same two larger classes, using only the second eigenvector for
spectral clustering and using k = 2 for INCRES. When the third eigenvector is
also used for spectral clustering and when k = 3 is used for INCRES, the two
methods find the same subdivision of one of these two larger classes.
In less straightforward clustering examples, the reseeding process can allow

INCRES to learn partitions that are not apparent to spectral clustering. Fur-
thermore, the formulation of INCRES allows it to be applied even in cases of
larger datasets where eigenpairs cannot be easily computed.

3 Data and Feature Extraction

Our audio data consists of recordings, provided by the US Naval Air Systems
Command, of different vehicles moving multiple times through a parking lot at
approximately 15mph. The original dataset consists of MP4 videos taken from
a roadside camera; we extract the dual channel audio signal, and average the
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Fig� 1� Synthetic similarity matrix with salt and pepper noise. White represents a
similarity value of 1; black represents a similarity value of 0.

(a) Eigenvectors                           (b) INCRES results

Fig� 2� (a) 2nd and 3rd eigenvectors of L�, and (b) INCRES results with k = 2 and
k = 3, using the synthetic similarity matrix in Fig. 1. Note similar separation into two
and three clusters.

channels together into a single channel. The audio signal has a sampling rate of
48,000 samples per second. Video information is used only to ascertain ground
truth (vehicle identification) for training data.

Fig� 3� Raw audio signal for a vehicle passage.

Each extracted audio signal is a sequence of a vehicle approaching from a
distance, becoming audible after 5 or 6 s, passing the microphone after 10 s, and
then leaving. An example of the raw audio signal is shown in Fig. 3. We form
a composite sequence, shown in Fig. 4, from multiple passages of three different
vehicles (a white truck, black truck, and jeep), selecting the two seconds where
the vehicle is closest to the camera. The goal is to test the clustering algorithm’s
ability to differentiate the vehicles.
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Fig� 4� Raw audio signal for composite data. Images show the three different vehicles,
as seen in accompanying video (not used for analysis).

We preprocess the data by grouping audio samples into larger windows. With
windows of 1/8 of a second, or 6000 samples per window, we find both a sufficient
number of windows and sufficient information per window. While there is no
clear standard in the literature, this window size is comparable to those used in
other studies [13]. Discontinuities between successive windows can in some cases
be reduced by applying a Hamming window as a filter, or by allowing overlap
between windows [13]. However, in our study we found no conclusive benefit
from either of these, and therefore used standard box windows with no overlap.
Relevant features are extracted from the raw audio signal using the short-time

Fourier transform (STFT). The Fourier decomposition contains 6000 symmetric
coefficients, leaving 3000 usable coefficients. Figure 5 shows the first 1000 Fourier
coefficients, using a moving mean of 5 samples, for a time window representing
a truck passing and a time window representing a sedan passing, both in similar
positions. Note that a clear frequency signature is apparent for each vehicle, with
much of the signal concentrated within the first 250 coefficients or 2000Hz.

Fig� 5� First 1000 Fourier coefficients for a truck and a car, after applying a moving
mean of size 5.

Each time window in the audio signal is taken as an independent data point
to be clustered: we define the feature vector x� ∈ �

m as the set of m Fourier
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Fig� 6� Spectrum of L� for vehicle data. Largest gap is after third eigenvalue.

coefficients associated with that window. Since many of these coefficients are
relatively insignificant, we consider the cosine distance measure between data
points

dij = 1−
x� · xj

�x�� �xj�
. (2)

We then construct anM -nearest neighbor graph, where the edge �i� j} is present
if j is among the M closest neighbors of i or vice-versa, for a fixed value of M .
Following standard methods [9], the similarity Sij is taken to be a Gaussian
function of distance,

Sij = e�d�

�j�σ�

� � (3)

where σi is defined adaptively [15] as the distance to vertex i’s Mth neighbor.

4 Results

Our composite vehicle dataset contained the 18 s of raw audio shown in Fig. 4,
resulting in n = 144 data points each representing 1/8-second time windows. We
used only the first m = 1500 Fourier coefficients, reducing the risk of artifacts
from window discontinuities. We set M = 15 for the M -nearest neighbor graph,
so that neighborhoods contain the 16 data points used in the 2-second clips of a
single vehicle passage.
Figure 6 shows the eigenvalues of the Laplacian for the vehicle data. The

largest gap follows the third eigenvalue, consistent with three clusters represent-
ing the three vehicles actually present in the data. We therefore set k = 3 for
both spectral clustering and INCRES.
Figure 7 shows the second and third eigenvectors of Ls and Fig. 8 shows

typical results of INCRES for k = 2 and k = 3 (INCRES is stochastic, but results
vary little from run to run). As in our earlier synthetic example, the second
eigenvector and k = 2 INCRES result provide comparable binary separations
of the data. Thresholding the eigenvector just above zero would place all of
the vehicle 1 data in one cluster, and most of the vehicle 2 and 3 data in the
other cluster (the exceptions are primarily data points at the beginning and
end of a vehicle passage, where the signal is weakest). The third eigenvector
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Fig� 7� 2nd and 3rd eigenvectors of L� for vehicle data.

Fig� 8� INCRES results for vehicle data.

mostly distinguishes vehicle 2 (negative values) and vehicle 3 (positive values).
The k = 3 INCRES result recognizes the three vehicles very accurately, and is
discussed below.
Note that unlike in the straightforward synthetic data problem, the third

eigenvector is not by itself sufficient to separate the three clusters. Figure 9 shows
the results of k-means clustering, with k = 3, on the third eigenvector alone.
While all vehicle 1 data points are clustered together, a significant fraction of
vehicle 2 and 3 data points are incorrectly placed in that cluster as well.
Figure 10 shows results of the more conventional spectral clustering method,

using k-means on the �
2 projection of the data given by the 2nd and 3rd eigen-

vectors. The inclusion of the 2nd eigenvector is sufficient to cluster the vast
majority of vehicle 2 and 3 data points correctly.
Tables 1 and 2 interpret the spectral clustering results of Fig. 10 and the

INCRES k = 3 results of Fig. 8 as classifications. Both methods classify all of
vehicle 1 correctly. but INCRES performs noticeably better than spectral clus-
tering on vehicle 2, and they perform comparably on vehicle 3. Overall purity
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Fig� 9� k-means on third eigenvector of L� for vehicle data.

Fig� 10� k-means on second and third eigenvectors of L� (standard spectral clustering)
for vehicle data.

Table 1� Vehicle clustering results using spectral clustering.

True Obtained cluster

Vehicle 1 �white truck) Vehicle 2 �black truck) Vehicle 3 �jeep)

Vehicle 1 �white truck) 64 0 0

Vehicle 2 �black truck) 5 24 3

Vehicle 3 �jeep) 8 2 38

Table 2� Vehicle clustering results using INCRES with k = 3.

True Obtained cluster

Vehicle 1 �white truck) Vehicle 2 �black truck) Vehicle 3 �jeep)

Vehicle 1 �white truck) 64 0 0

Vehicle 2 �black truck) 1 29 2

Vehicle 3 �jeep) 6 3 39

scores are 87.5� for spectral clustering, and 91.7� for INCRES, with misclassi-
fications again occurring primarily at the beginning or end of a vehicle passage.
The runtimes for both algorithms in Matlab were both under one second,

insignificant compared to the minutes needed for processing the initial data.
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5 Conclusions

We have presented a method to identify moving vehicles from audio recordings,
by clustering their frequency signatures with an incremental reseeding method
(INCRES) [3]. Motivated by the approach in [11], we decompose the audio sig-
nal with a short-time Fourier transform (STFT), and treat each 1/8-second time
window as an individual data point. We then apply a spectral embedding and
consider the symmetric normalized graph Laplacian. We find that spectral clus-
tering, which uses the leading eigenvectors of the Laplacian, correctly clusters
87.5� of the data points. INCRES, which directly uses the Laplacian to con-
struct a random walk on the graph, correctly clusters 91.7� of the data points.
Almost all incorrectly clustered points lie at the very beginning or very end of a
vehicle passage, when the vehicle is furthest from the recording device. The vast
majority of data points result in correct vehicle recognition.
We observe that there is a close relation between the kth eigenvector and the

INCRES output for k clusters. This suggests that clustering results might be
improved by simultaneously taking the INCRES output for 2 through k clusters,
and then using k-means on this �

k�1 projection of the data just as spectral
clustering does on the 2nd through kth eigenvectors. While doing so does not
noticeably change our INCRES k = 3 results, the difference could be significant
for larger values of k. This could be tested, using a dataset with a larger number
of vehicles.
Finally, we note that, since time windows are treated as independent data

points, our approach ignores most temporal information. Explicitly taking
advantage of the time-series nature of our data in the clustering algorithm could
improve results, by clustering data points according not only to their own fre-
quency signatures but also to those of preceding or subsequent time windows.
Furthermore, while the STFT is a standard method for processing audio sig-
nals, it suffers from two drawbacks: the use of time windows imposes a specific
time scale for resolving the signal that may not always be the appropriate one,
and vehicle sounds may contain too many distinct frequencies for the Fourier
decomposition to yield easily learned signatures. These difficulties may best be
addressed by using multiscale techniques such as wavelet decompositions that
have been proposed for vehicle detection and classification [1,2], as well as more
recently developed sparse decomposition methods that learn a set of basis func-
tions from the data [4–7].
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