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Network topologies can be highly non-trivial, due
to the complex underlying behaviours that form
them. While past research has shown that some
processes on networks may be characterized by local
statistics describing nodes and their neighbours, such
as degree assortativity, these quantities fail to capture
important sources of variation in network structure.
We define a property called transsortativity that
describes correlations among a node’s neighbours.
Transsortativity can be systematically varied,
independently of the network’s degree distribution
and assortativity. Moreover, it can significantly impact
the spread of contagions as well as the perceptions
of neighbours, known as the majority illusion. Our
work improves our ability to create and analyse more
realistic models of complex networks.

1. Introduction
Networks serve as a substrate for the spread of contagion
in social groups [1], propagation of information in
online platforms [2] and cascading failures in the
electrical power grid as well as in the financial
sector [3–11]. Networks are frequently modelled using
random graphs [12–15] that preserve certain statistical
properties of real networks, such as degree distribution
or degree assortativity [16], while removing other
structure. These random graph models have been
critical to understanding phenomena such as percolation,
disease propagation, and ferromagnetism [3–5,8,9,17–
19]. However, networks also exhibit substantial non-
local structure as manifested by large numbers of
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connected triplets and bigger motifs [20], as well as degree [21] or attribute [22] correlations of
two-hop, or even more distant, neighbours. This higher-order structure is necessary to explain
effects such as the strong friendship paradox [23], where the majority of a node’s neighbours
have higher degree than the node itself [24].

We describe a method to measure, model and vary a higher-order network property that
we call transsortativity. This property measures degree correlations among a node’s neighbours
(which are a two-hop distance away from each other). We illustrate how it can significantly alter
network structure and network phenomena. Namely, we show that transsortativity amplifies
the ‘majority illusion’ effect, where an unpopular idea may be perceived as popular by a large
fraction of individuals, and also that it impacts the size and critical threshold for cascades in the
Watts threshold model [1]. Our work therefore complements recent efforts to extend metrics of
node degree correlations to more realistic situations, such as varying within-group assortative
mixing [25] and long-range degree correlations [21,26–28]. We also show that transsortativity
helps generalize overdispersion (monophily) in social networks [22,29], where the attributes of
a node’s neighbours display a larger variance than expected, and also describes the less familiar
case of underdispersion.

Finally, we describe a rewiring procedure to systematically vary a network’s transsortativity
while keeping its degree distribution and assortativity fixed. Our examples demonstrate that
transsortativity is an important tool in the statistical modelling of networks, and can be
used with configuration models [12,13] and random rewiring [15] to create more realistic
random networks.

2. Results

(a) Quantifying transsortativity in networks
Our analysis is motivated by the dK-series of probability distributions [30], which specifies the
joint distribution of the degrees of connected subgraphs of d nodes. This provides a useful
framework for characterizing network structure. The degree distribution of a network, p(k),
represents its 1K structure. The joint degree distribution of pairs of adjacent nodes, e(k, k′),
represents its 2K structure. The Pearson correlation coefficient of the degrees of a node and of
its neighbour is known as the degree assortativity [16]:

r2K = Cov(k, k′)
Var(k)

=
∑

k,k′ kk′ [e(k, k′) − q(k)q(k′)
]

∑
k k2q(k) − [∑

k kq(k)
]2 , (2.1)

where q(k) =∑
k′ e(k, k′) = kp(k)/〈k〉 is the degree distribution of a node that is adjacent to another,

and Cov(k, k′) and Var(k) are taken with respect to q(k).
Now consider the neighbours of a degree-k node. Their degree distribution is ν(k′|k) =

e(k, k′)/q(k). In many real-world networks, given a pair of such neighbours i and j, one finds that
their degrees k′

i and k′
j are correlated even if i and j are not themselves linked by an edge [23].

This two-hop degree correlation reflects the higher-order network structure, specifically the 3K
structure characterizing connected subgraphs with three nodes forming a ‘wedge’ or a ‘triangle’,
as shown in figure 6.

Let w(k′
i, k′

j|k) denote the joint degree distribution for those two neighbours of a degree-k node.
This gives the probability that a degree-k node will have neighbours with degrees k′

i and k′
j. Note

that this formulation tracks how many shared neighbours of degree k each pair of nodes i and j
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has. We define the correlation coefficient of k′
i and k′

j, conditioned on k, as

r3K(k) =
Cov(k′

i, k′
j|k)

Var(k′|k)

=
∑

k′
i,k

′
j
k′

ik
′
j

[
w(k′

i, k′
j|k) − ν(k′

i|k)ν(k′
j|k)
]

∑
k′ (k′)2ν(k′|k) − [

∑
k′ ν(k′|k)]2 , (2.2)

where Cov(k′
i, k′

j|k) and Var(k′|k) are taken with respect to ν(k′|k). We refer to r3K(k) as
transsortativity, because it measures correlations across neighbours rather than between a node and
its neighbour. Transsortativity generalizes the notion of assortativity from immediate, or one-hop,
neighbours to two-hop neighbours.

Values of transsortativity are bounded. To see why, consider the mean degree of a neighbour
of a degree-k node, k̄′ =∑

i k′
i/k. The variance of this quantity is

Var(k̄′|k) = 1
k2

⎡
⎣ k∑

i=1

Var(k′
i|k) + 2

k−1∑
i=1

k∑
j=i+1

Cov(k′
i, k′

j|k)

⎤
⎦

= Var(k′|k)
k

[1 + (k − 1)r3K(k)]. (2.3)

Non-negativity of the variance gives the lower bound:

r3K(k) ≥ − 1
k − 1

. (2.4)

Examples of transsortativity in real-world networks [31] are given in figure 1, showing that
observed values of r3K(k) are large in cases ranging from a biological network of protein–protein
interactions (Reactome), to co-authorship networks between physicists (ArXiv HepPh and GR), to
hyperlink networks between webpages (Google), to friendship social networks (Facebook). Note
that in most of these networks, transsortativity values are positive, implying assortative mixing
between two-hop neighbours, regardless of the degree assortativity of immediate neighbours.
Surprisingly, the Facebook social graph exhibits substantially negative transsortativity for low-
degree nodes. This implies that low-degree nodes are connected to both low-degree and high-
degree neighbours.

By averaging over all degrees in the network, we can calculate the mean transsortativity,
analogous to equation (2.1):

r̄3K =
∞∑

k=2

p(k)r3K(k), (2.5)

which, in turn, implies that

r̄3K ≥ −
∞∑

k=2

p(k)
1

k − 1
≥ −

〈
1

k − 1

〉
. (2.6)

Negative transsortativity is bounded by the mean of the inverse and is therefore typically small.

(b) Transsortativity rewiring algorithm
We use a rewiring algorithm [19] that preserves the degree distribution and degree assortativity
(i.e. 1K and 2K structure), but can independently vary the transsortativity (3K structure). The
algorithm is illustrated in figure 2. First, the algorithm chooses at random two nodes v0 and
w0 of equal degree k0. Then, it chooses at random one of the k0 neighbours of v0, denoted v1,
and one of the k0 neighbours of w0, denoted w1. To decrease transsortativity (figure 2a), edges
{v0, v1} and {w0, w1} are replaced with edges {v0, w1} and {w0, v1} if the edge swap makes v0 and w0
have more diverse neighbour degrees, i.e. smaller r3K(k0). To increase transsortativity (figure 2b),
the edges are swapped if this makes v0 and w0 have more similar neighbour degrees, i.e. larger
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Figure 1. Transsortativity of networks from a variety of domains. The networks [31] include biological (Reactome),
co-authorship (HepPh, GR), technological (Google) and social (Facebook). See appendix A for further examples. Grey region
shows transsortativity values excluded by the theoretical lower bound (equation (2.4)). Data are aggregated using log-binning
on degree k. (Online version in colour.)

w0v0 v0 w0

w1v1
w1v1

low degree
high degree
focal node

(b)(a)

Figure 2. Transsortativity rewiring. The algorithm takes two nodes,v0 andw0, that have the same degree, and picks respective
neighbours v1 and w1. (a) To reduce transsortativity, v1 and w1 swap edges (dashed lines) if this makes neighbour degrees
become more diverse. (b) To increase transsortativity, v1 and w1 swap edges if this makes neighbour degrees become more
similar. Since v0 andw0 have the same degree, the degree distribution and assortativity remain unchanged. (Online version in
colour.)

r3K(k0). Our implementation of the algorithm is partly annealed: we initially set the probability
of rewiring in the undesirable direction to a finite value (0.5), then lower it over time to reduce
undesirable edge swaps. The greedier rewiring strategy allows for achieving more extreme values
of transsortativity, although in either case we can carefully control the final mean transsortativity
value. We note that this may potentially result in non-ergodic dynamics, with subtle dependence
on initial conditions. However, the good agreement between the theory and networks suggests
that the risk of undesirable artefacts due to non-ergodicity is small.

We further illustrate the algorithm on Zachary’s Karate club network [32], shown in figure 3.
This network contains 34 members of a Karate club, with 78 social ties between them. The
network is highly disassortative, with r2K = −0.476. Before rewiring, the original Karate club
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Figure 3. Transsortativity rewiring of Zachary’s Karate Club network. (a) Negatively transsortative (r̄3K = −0.40), (b) original
(r̄3K = −0.098) and (c) positively transsortative (r̄3K = 0.46) versions of the network. Lighter dots correspond to the giant
vulnerable cluster (GVC) in the Watts model with thresholdφ = 0.2 (see cascade discussion in main text). Insets: examples of
neighbour degree correlations within the negatively and positively transsortative networks. (Online version in colour.)

network has neutral transsortativity: r̄3K = −0.098 (figure 3b). Our rewiring algorithm can create
networks with mean transsortativity ranging from r̄3K = −0.40 (figure 3a) to r̄3K = 0.46 (figure 3c).
While the degree distribution and degree assortativity are identical in all cases, nodes in the
negatively transsortative network have neighbours with widely varying degree, while nodes
in the positively transsortative network have neighbours with similar degree (see figure insets),
producing very different topologies.

(c) Transsortativity and network phenomena
(i) Majority illusion

We now consider the impact transsortativity has on network phenomena. First, we look at
networks where nodes have particular attributes: examples might be gender, political affiliation
or economic status. It has been shown that certain topologies produce a ‘majority illusion’ [33],
where a significant fraction of nodes observe that a majority of their neighbours have a specific
attribute, even when it is uncommon. Transsortativity can amplify the majority illusion. To
understand why, consider a hypothetical social network where an individual’s popularity
correlates with an attribute such as happiness [34]. As a consequence, happier people would be
more popular in this network and vice versa. Thus, even if only a small minority of individuals
are happy, they would have a tendency to share many neighbours. These neighbours see a large
fraction of friends that are happy, and a naive observer would conclude that most of his or her
friends are happy.

The following straightforward analysis demonstrates this phenomenon explicitly. Consider a
degree-k node with a binary attribute x ∈ {0, 1}, such as gender or political affiliation, and assume
that x = 0 for a majority of nodes. Let f (k) be the probability that a majority of its k neighbours
have attribute value x′ = 1. The overall probability of majority illusion is

P> 1
2
=

kmax∑
k=1

p(k)f (k). (2.7)

Suppose that neighbour attributes simply arose as the outcomes of independent Bernoulli random
trials with success probability denoted μx(k) = P(x′ = 1|k). Then, since f (k) is the probability of
having more than k/2 such successes, it could be expressed using a binomial distribution and
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corresponding Gaussian approximation:

f (k) =
k∑

m=
⌈

k+1
2

⌉
(

k
m

)
μx(k)m[1 − μx(k)]k−m

≈ 1 − Φ

[
1 − 2μx(k)

2σx(k)

]
, (2.8)

where Φ is the cumulative distribution function of the normal distribution, and σ 2
x (k) = μx(k)[1 −

μx(k)]/k is the variance in the mean neighbour attribute value of a degree-k node.
However, in networks where node attributes are correlated with their degrees, transsortativity

leads to correlations between attributes x′
i, x′

j of pairs of two-hop neighbours. Assuming the
network is locally tree-like and no higher-order correlations exist, such as among connected
subgraphs of four nodes (4K structure), it is sufficient to replace the expression for σ 2

x (k) by the
variance of a correlated binomial distribution [23,35]. The same calculation as in equation (2.3)
gives

σ 2
x (k) = 1

k
μx(k)[1 − μx(k)] + k − 1

k
Cov(x′

i, x′
j|k). (2.9)

Under a simplifying assumption of a bivariate normal distribution for attribute x and degree k
(see appendix A),

Cov(x′
i, x′

j|k) ≈ ρ2
kx

Var(x)
Var(k)

Var(k′|k)r3K(k), (2.10)

where ρkx = Cov(k, x)/
√

Var(k)Var(x) is the degree-attribute correlation. Then, σ 2
x (k) is close to

linear in the transsortativity value r3K(k), and it follows from equation (2.8) that increasing
transsortativity amplifies the majority illusion. Adopting our earlier analogy, if popular people
are happier, a transsortative network structure can create the perception that most people are
happier, even when few people are.

We demonstrate this effect in figure 4, on power-law networks (PDF exponent α = 2.1,
degree assortativity r2K = −0.15), with degree-attribute correlation ρkx = 0.6, rewired to vary
mean transsortativity r̄3K (from −0.05 to 0.4). We remove parallel edges, which are otherwise
relatively common in many networks generated by the configuration model. Only 1% of the
nodes have attribute value x = 1, while the rest have attribute x = 0. We show the results for f (k)
from an exact calculation for k = 1, 2 and the normal approximation in equation (2.8) for k ≥ 3,
based on the measured values of μx(k) and σx(k). (See appendix A for details and for results
on differently generated networks.) We also plot the empirically measured fraction of degree-
k nodes that experience the majority illusion. In both cases, the majority illusion effect grows
significantly with increasing transsortativity r̄3K: for moderate degree k, the fraction of nodes that
see the 1% minority as being a majority in their neighbourhoods can be an order of magnitude
larger at r̄3K = 0.4 than at r̄3K = 0. Furthermore, the model results are qualitatively consistent
with the empirical results, suggesting that the tree-like approximation is justified and that degree
correlations beyond transsortativity do not play an important role.

(ii) Overdispersion

While other mechanisms have been proposed for introducing correlations between neighbour
attributes, their consequences are more limited. In the field of social networks, the phenomenon
of overdispersion refers to cases where the attribute variance σ 2

x (k) is larger than a simple
binomial model would predict. This is associated with a segregation effect where nodes are
unexpectedly likely or unlikely to have neighbours possessing the attribute. Empirical studies
have suggested that overdispersion can occur when the neighbour attribute probability μx(k)
itself varies from one node to another [29], and moreover that this can induce pair correlations
between neighbours [22]. Indeed, from the law of total covariance, one may show (see appendix
A) that Cov(x′

i, x′
j|k) is simply equal to the variance of the quantity μx(k). However, such an
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Figure4. Transsortativity amplifies themajority illusion effect. Theplot shows strength ofmajority illusion effect onpower-law
networks fromconfigurationmodelwith 10,000nodes andPDFpower-lawexponentα = 2.1. Networks are rewired for different
mean transsortativity values, both positive and negative. 1% of nodes have binary attribute value x = 1, configured to create
degree-attribute correlation ρkx = 0.6. Lines show results from binomial model (2.8) with measured mean and variance of
(correlated) neighbour attribute values. Symbols show empirical fraction of degree-k nodes for which a majority of neighbours
have attribute x′ = 1. (Online version in colour.)

approach only accounts for positive neighbour correlations and a resulting increase in σ 2
x (k)

(see equation (2.9)). Transsortativity provides a mathematical framework that simultaneously
includes positive and negative attribute correlations, overdispersion as well as underdispersion,
and segregation of neighbour attributes.

(iii) Global cascades

Finally, we demonstrate how a network’s transsortative structure can significantly alter dynamics
of phenomena unfolding on it. We consider the popular Watts threshold model describing cascade
dynamics [1], where nodes can be either ‘active’ or ‘inactive’. Starting from a single active seed,
nodes in the network become activated whenever more than a given fraction φ of their neighbours
are active. This model has been used to describe contagion processes as well as the spread of ideas
and opinions spread in social networks [36,37].

In the Watts model, global cascades occur when the required threshold φ is below a critical
value φ∗: the largest cascade, known as the giant vulnerable cluster (GVC), then extends to a finite
fraction of the network [17–19]. Figure 5 illustrates how φ∗ varies when networks are rewired for
different transsortativity values. Increasing transsortativity tends to increase the critical threshold
for the GVC, from the value φ∗ = 1/7 predicted by the generating function formulation in [19]
for r̄3K = 0, to φ∗ = 1/2 for r̄3K = 0.3. Just as transsortativity amplifies the majority illusion effect
in low-to-moderate degree nodes, it can cause nodes to perceive a small fraction of active nodes
as a large fraction of their neighbours, and become activated themselves. Thus, even moderate
transsortativity can have a significant impact on the formation of global cascades.

For the special case of φ = 1/2, active nodes are those experiencing the majority illusion,
therefore transsortativity has the direct effect of amplifying cascade size. Figure 5 demonstrates
that this effect generally occurs for large enough values of φ. In that regime, the cascade is sparse
and spreads as a branching process, therefore the (correlated) binomial model for the majority
illusion applies here. A further example is seen in figure 3, where the GVC (at φ = 0.2) nearly
doubles in size from the original network to the positively transsortative network. However, for
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Figure 5. Transsortativity destabilizes networks to global outbreaks. The plot shows the size of cascades triggered by a
single active node on power-law networks from configuration model with 10 000 nodes, PDF exponent α = 2.4, and degree
assortativity value r2K = −0.07. Solid line shows theoretical results for baseline case r̄3K = 0: below a critical threshold value
ofφ∗ = 1/7, a finite fraction of nodes belongs to the GVC. Symbols show simulated results on networks rewired for different
mean transsortativity values. (Online version in colour.)

smaller values of φ, cascades spread far more densely [17]. The locally tree-like approximation of
the network no longer provides a valid description of neighbour activity, and figure 5 shows that
increasing transsortativity suppresses rather than amplifies the GVC there. It remains an open
question whether this could in part be due to a coarsening effect, where attribute segregation
results in the formation of domains in the network that impede the growth of the GVC. An
analogous effect has been noted in [16,18] under increasing degree assortativity.

3. Discussion
We have defined transsortativity in a network as the (two-hop) degree correlation between a pair
of neighbours of a node, by analogy to degree assortativity, which represents the (one-hop) degree
correlation between a node and its neighbour [16]. Transsortative structure has a significant
impact on perceptions and phenomena in the network. It can significantly amplify the majority
illusion effect, and increase the critical threshold for global cascades in the Watts threshold
model by more than three-fold. Transsortativity partitions the network into domains where
unexpectedly high or low concentrations of an attribute are observed [22,29]. In real networks,
both positive and negative transsortativity occur, and we show how to increase or decrease
transsortativity while preserving lower-order network statistics such as degree distribution and
assortativity. Our work explains how to incorporate more realistic structure in configuration
models [12,13] and degree-preserving rewiring algorithms [15] in order to better capture how
real-world networks affect network phenomena.

This paper raises a number of questions to be addressed by future work. Finite size effects
are known to constrain maximum degree and assortativity in scale-free networks [38], but the
impact of any structural cutoff on transsortativity remains to be studied. Another interesting
question is how transsortativity affects evolution of networks. It is conceivable, for example,
that transsoratativity and triadic closure jointly increase assortativity in growing networks.
Finally, our approach could be generalized to still higher-order structures, for example, connected
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subgraphs of four nodes (i.e. 4K structure), in cases where such expanded statistical models of
networks are required.
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transsortativity_code.
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Appendix A

(a) Transsortative structure of real networks
A network’s 3K structure is specified by degree correlations of subgraphs of three connected
nodes, either ‘wedges’ or ‘triangles’, as shown in figure 6. When measuring the transsortative
structure, we condition on the degree of the central node and measure the correlation of the
degrees k1 and k2 of its neighbours.

k1 k2

k

k1 k2

k

wedges triangles

Figure 6. The two types of 3K structures: wedges and triangles.

(i) Zachary’s Karate Club

We illustrate the impact of transsortativity on network structure using a widely studied
benchmark, Zachary’s Karate club network [32]. This network contains 34 members of a Karate
club with 78 social ties between them. The degree of nodes ranges from one to 17.

We use a rewiring algorithm to change transsortativity while preserving the network’s 2K
and 1K structure. The rewiring algorithm randomly chooses two edges with two equivalent end
degrees, and swaps their connections so as to change the mean transsortativity in the desired
direction. The original Karate club network has a global weighted transsortativity value of −0.098.
By implementing the above-mentioned algorithms, we created two network with extremely
positive and negative transsortativity values of 0.4595 and −0.4021, respectively.

The original and rewired networks are shown in figure 2 of the main text. The visualization
demonstrates how transsortativity can change the emergent structure of networks. When
transsortativity is negative, the network appears to have a core-periphery structure, while for
positive transsortativity, it appears to split into communities.

To further investigate this phenomenon, we plot r3K(k), transsortativity aggregated over
neighbour pairs of same-degree nodes. Figure 7 shows this distribution for the original and
rewired networks shown in figure 2. The rewiring procedure mainly changes the transsortativity

https://github.com/KeithBurghardt/transsortativity_code
https://github.com/KeithBurghardt/transsortativity_code
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values of low degree nodes. For negative transsortativity, this is largely because transsortativity
as a function of degree k is bounded by −1/(k − 1).

(ii) Other networks

Transsortativity can be substantial in real-world networks. Figure 8 shows transsortativity,
r3K(k), aggregated over pairs of neighbours of same-degree nodes in various social, biological,
technological and other networks. The real-world networks usually have significant positive
values of r3K(k). The lower degree nodes usually have significant positive transsortativity values.
This coherence with 3K structure is explored in the strong friendship paradox problem [23].
Transsortativity often peaks for middle degree nodes in all networks.

The six networks we study are from a variety of domains, including social networks
(Facebook [31], Digg [31]), biological (Reactome [31]), Co-authorship (HepPh [31], HepTh [31])
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Table 1. List of real-world networks and their basic profiles.

assort. clustering transsort.
network type nodes edges r2K coeff. r̄3K
HepPh collaboration 12 008 118 521 0.632 0.392 0.207

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reactome biological 6326 146 160 0.245 0.606 0.250
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Digg social 27 567 175 892 0.166 0.113 0.105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Facebook social 4039 88 234 0.064 0.265 −0.022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HepTh citation 34 546 420 877 −0.006 0.146 0.126
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Google techno. 875 713 4 322 051 −0.055 0.055 0.008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet semantic 146 005 656 999 −0.062 0.096 0.216
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Karate club social 34 78 −0.476 0.256 −0.098
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and Semantic networks (WordNet [39]). The basic properties of networks we used in this paper
are listed in table 1. In this table, we see that the number of nodes (Nodes) varies from 34 to
875 713, and the number of edges (Edges) ranges from 78 to 4 322 051. Next, we observe that the
networks have a broad range of assortativity values (Assort.) that varies from −0.476 to 0.632. The
mean local clustering coefficients (Cluster. Coeff.) ranges from small (0.055) to large (0.606), and
finally, the mean transsortativity (Transsortativity) ranges from −0.022 to 0.250. Overall, we find
more positive than negative mean transsortativity networks.

(b) Positive and negative values of transsortativity
Assume that the 2K structure of the network has conditional degree distribution ν(k′|k) =
e(k, k′)/q(k), where e(k, k′) is the joint degree distribution of nodes and neighbours, and q(k) is
the neighbour degree distribution. For simplicity, we focus our discussion on networks with
three degree values: kH, kL, and 2. The argument can be easily extended to arbitrary degree
distributions. The distribution for degree-2 nodes is

ν(kH|2) = ν(kL|2) = 1
2

. (A 1)

The transsortativity is then defined as

r3K(k) = 1
Var(k′|k)

∑
k′

i,k
′
j

k′
ik

′
j

[
w(k′

i, k′
j|k) − ν(k′

i|k)ν(k′
j|k)
]

. (A 2)

The joint neighbour degree distribution w(k′
i, k′

j|k) denotes the probability that a degree-k node
will have neighbours with degrees k′

i and k′
j. We therefore take into account how many shared

neighbours of degree k each (i, j) pair has.

— Zero transsortativity: This happens when w(k′
i, k′

j|2) = ν(k′
i|2)ν(k′

j|2). We can expect

w(kH, kH|2) = w(kH, kL|2) = w(kL, kH|2) = w(kL, kL|2) = 1
4 . Namely, we can expect 1

4 of
degree 2 nodes are with two kH neighbours, another 1

4 of degree 2 nodes are with two
kL neighbours, and the rest 1

2 of degree 2 nodes are with one kH and one kL neighbour. In
this case, r3K(2) = 0.

— Positive transsortativity: If we enforce strong positive correlation among the neighbourhood
of k = 2 nodes without changing ν(k′|2) distribution. We can have w(kH, kH|2) =
w(kL, kL|2) = 1

2 , and w(kH, kL|2) = w(kL, kH|2) = 0. Here we can expect 1
2 of k = 2 nodes are

with two kH neighbours, another 1
2 of degree 2 nodes are with two kL neighbours. In this
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case,

r3K(2) =
(

2
kH − kL

)2 (1
4

k2
H − 1

2
kHkL + 1

4
k2

L

)
= 1. (A 3)

— Negative transsortativity: If we enforce strong negative correlation among the
neighbourhood of k = 2 nodes without changing ν(k′|2) distribution. We can have
w(kH, kL|2) = w(kL, kH|2) = 1

2 , and w(kH, kH|2) = w(kL, kL|2) = 0. Here we can expect all of
k = 2 nodes are with one kH and one kL neighbour. In this case,

r3K(2) =
(

2
kH − kL

)2 (
−1

4
k2

H + 1
2

kHkL − 1
4

k2
L

)
= −1. (A 4)

(c) Effect of transsortativity on majority illusion
(i) Relation between degree assortativity and 2K attribute correlations

In this section, we consider aspects of a network’s 2K structure, and in particular, how correlations
between degrees of connected nodes (degree assortativity) relate to correlations between the
attributes of connected nodes (homophily). If e(k, k′) represents the joint distribution of pairs of
adjacent nodes, then the covariance of the attributes of two adjacent nodes x and x′ is

Cov(x, x′) =
∑
k,k′

P(x = 1|k)e(k, k′)P(x′ = 1|k′) − 〈x〉2

=
∑
k,k′

E(x|k)e(k, k′)E(x′|k′) − 〈x〉2. (A 5)

Let us adopt the simplifying assumption that attribute x and degree k are described by a bivariate
normal distribution. In that case, a standard result on conditional expectation gives

E(x|k) = 〈x〉 + ρkx
σx

σk
(k − 〈k〉), (A 6)

where ρkx is the degree–attribute correlation, σ 2
x is the variance of the attribute distribution, and

σ 2
k is the variance of the network degree distribution p(k). Then

Cov(x, x′) =
∑
k,k′

[
〈x〉 + ρkx

σx

σk
(k − 〈k〉)

] [
〈x〉 + ρkx

σx

σk
(k′ − 〈k〉)

]
e(k, k′) − 〈x〉2

= 〈x〉
∑
k,k′

ρkx
σx

σk
(k + k′ − 2〈k〉)e(k, k′) + ρ2

kx
σ 2

x

σ 2
k

∑
k,k′

(k − 〈k〉)(k′ − 〈k〉)e(k, k′)

= 〈x〉ρkx
σx

σk

(
2
〈k2〉
〈k〉 − 2〈k〉

)
+ ρ2

kx
σ 2

x

σ 2
k

(
r2K + 〈k2〉2

〈k〉2 − 2〈k2〉 + 〈k〉2

)

= 2〈x〉ρkx
σx

σk

σ 2
k

〈k〉 + ρ2
kx

σ 2
x

σ 2
k

(
r2Kσ 2

k + σ 4
k

〈k〉2

)

= 2ρkxσxσk
〈x〉
〈k〉 + ρ2

kxσ
2
x σ 2

k

(
r2K + σ 2

k
〈k〉2

)
. (A 7)

(ii) Relationship between transsortativity and 3K neighbour attribute correlations

In this section, we consider aspects of a network’s 3K structure, and in particular, how correlations
between the degrees of pairs of neighbours (transsortativity) relate to correlations between the
attributes of pairs of neighbours. Consider a node, two of whose neighbours have degrees k′

i, k′
j
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and attributes x′
i, x′

j. Then the correlation between the attributes is

Cov(x′
i, x′

j|k) =
∑

x′
i=0,1

∑
x′

j=0,1

x′
ix

′
jP(x′

i, x′
j|k) −

⎡
⎣ ∑

x′=0,1

x′P(x′|k)

⎤
⎦

2

= P(x′
i = 1, x′

j = 1|k) − [
P(x′ = 1|k)

]2

=
∑
k′

i,k
′
j

P(x′
i = 1|k′

i)w(k′
i, k′

j|k)P(x′
j = 1|k′

j) −
[∑

k′
P(x′ = 1|k′)ν(k′|k)

]2

=
∑
k′

i,k
′
j

E(x′
i|k′

i)w(k′
i, k′

j|k)E(x′
j|k′

j) −
[∑

k′
E(x′|k′)ν(k′|k)

]2

. (A 8)

Again using the simplifying assumption (equation (A 6)) that attribute x and degree k are
described by a bivariate normal distribution

Cov(x′
i, x′

j|k) =
∑
k′

i,k
′
j

[
〈x〉 + ρkx

σx

σk
(k′

i − 〈k〉)
] [

〈x〉 + ρkx
σx

σk
(k′

j − 〈k〉)
]

w(k′
i, k′

j|k)

−
(∑

k′

[
〈x〉 + ρkx

σx

σk
(k′ − 〈k〉)

]
ν(k′|k)

)2

= 〈x〉2 + 〈x〉
∑
k′

i,k
′
j

ρkx
σx

σk
(k′

i + k′
j − 2〈k〉)w(k′

i, k′
j|k)

+ ρ2
kx

σ 2
x

σ 2
k

∑
k′

i,k
′
j

(k′
i − 〈k〉)(k′

j − 〈k〉)w(k′
i, k′

j|k)

−
(

〈x〉 +
∑

k′
ρkx

σx

σk
(k′ − 〈k〉)ν(k′|k)

)2

= 〈x〉2 + 2ρkx
σx

σk
〈x〉 [E(k′|k) − 〈k〉]

+ ρ2
kx

σ 2
x

σ 2
k

[
r3K(k)Var(k′|k) + E(k′|k)2 − 2E(k′|k)〈k〉 + 〈k〉2

]

−
[
〈x〉 + ρkx

σx

σk

[
E(k′|k) − 〈k〉]]2

= ρ2
kx

σ 2
x

σ 2
k

Var(k′|k)r3K(k). (A 9)

Thus, for positive ρkx, increasing transsortativity r3K(k) amplifies attribute correlations between
pairs of neighbours.

(iii) Neighbour attribute correlations as a consequence of nonuniformμx(k)

In a binomial model where neighbour attributes are specified by P(x′
i = 1|k) = μx(k),

independently for all neighbours of a node, there can still be correlations between neighbour
attribute values when the quantity μx(k) is itself unknown and drawn randomly. This is a
consequence of the law of total covariance.

As an analogy, imagine that each neighbour’s attribute was decided from a coin flip, but the
coin has an unknown bias b so that P(x′

i = 1|k) = b. The law of total covariance states that

Cov(x′
i, x′

j|k) = E(Cov(x′
i, x′

j|k, b)) + Cov(E(x′
i|k, b), E(x′

j|k, b)). (A 10)
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Figure 9. Strength of majority illusion effect on power-law networks. Symbols show fraction of nodes for which a majority
of neighbours have attribute x′ = 1. Lines show theory from equations (2.7) and (2.8), given measured mean and variance of
neighbour attribute values, and exact values calculated for k = 1 and 2 (see ‘Numerical analysis’). Networks are a configuration
model network with 10 000 nodes and PDF power-law exponent α = 2.4 rewired to reach different mean transsortativity
values. 1% of nodes have binary attribute value x = 1, assigned according to specific degree-attribute correlation values ρkx .
(Online version in colour.)

By construction, the covariance of x′
i|k and x′

j|k is zero conditional on b, so

Cov(x′
i, x′

j|k) = Cov(E(x′
i|k, b), E(x′

j|k, b))

= Cov(P(x′
i = 1|k, b), P(x′

j = 1|k, b))

= Cov(b, b)

= Var(b). (A 11)

Thus, if P(x′
i = 1|k) = μx(k) but μx(k) itself varies from one node to another,

Cov(x′
i, x′

j|k) = Var(μx(k)). (A 12)

Previous studies in the social network literature [22,29] have used precisely the mechanism of
varying attribute propensity to create overdispersion (monophily) of neighbour attributes. The
expression above replicates the empirical observation by Altenburger & Ugander [22] that this
induces attribute similarities between friends-of-friends (x′

i and x′
j) without necessarily requiring

similarity among friends (x′ and x). However, note that since Var(μx(k)) is nonnegative, this
mechanism can only account for positive neighbour correlations, unlike transsortativity which
can give rise to both positive and negative values of Cov(x′

i, x′
j|k).

(iv) Numerical analysis

From the 2K and 3K structures of the network, we can measure the values of μx(k) and σ 2
x (k)

for each value of k. If the attributes of the nodes are restricted to be binary, the information is
sufficient to give the correct strength of the majority illusion for low degree classes. For degree
k = 1, as have f (1) = μx(1), as it only has a single neighbour. For degree k = 2, a node observes
the majority illusion only when both neighbours bear x′ = 1, or f (2) = p11. Considering the three
possible cases of neighbour pairs (p11, p10, p00), we can write the relations with μx(k) and σ 2

x (k) by
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the first and the second moment

μx(k) = p11 + 1
2

p10 and σ 2
x (k) = p11 + 1

4
p10 − [μx(k)]2 . (A 13)

The two moments do not depend on p00. We can solve this system of two equation and two
unknowns to get f (2) = p11 = 2σ 2

x (k) + 2μ2
x(k) − μx(k).

For higher values of k, we use the Gaussian approximation of f (k) to calculate the strength
of the majority illusion with correlated neighbours. We define the ‘majority illusion’ as nodes
observing more than 1/2 of their neighbours in the active state. Therefore, we need to move the
lower bound in the integral of the Gaussian PDF to exclude the cases in which nodes see 1/2
or fewer of their neighbours in the active state. The lower bound is 1

2 for odd degree classes,
but 1

2 + 1
2k for even degree classes. By using the procedure above, we produce the lines plotted

in figure 3 in the main paper, for networks of varying transsortativity generated from power-
law degree distributions with PDF exponent α = 2.1. Those results show that the locally tree-
like approximation and the normal approximation to the binomial distribution are adequate to
describe the majority illusion. Note that the latter approximation further assumes that moments
higher than the variance can be neglected, and so there are no higher-order correlations beyond
3K, such as those involving connected subgraphs of four nodes.

We also display similar results in figure 9, for power-law networks with exponent α = 2.4.
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