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Real-world networks are rarely static. Recently, there has been increasing interest in both network growth and
network densification, in which the number of edges scales superlinearly with the number of nodes. Less studied
but equally important, however, are scaling laws of higher-order cliques, which can drive clustering and network
redundancy. In this paper, we study how cliques grow with network size, by analyzing several empirical networks
from emails to Wikipedia interactions. Our results show superlinear scaling laws whose exponents increase with
clique size, in contrast to predictions from a previous model. We then show that these results are in qualitative
agreement with a model that we propose, the local preferential attachment model, where an incoming node links
not only to a target node, but also to its higher-degree neighbors. Our results provide insights into how networks
grow and where network redundancy occurs.
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I. INTRODUCTION

Networks underlie a wide variety of social phenomena,
from the spread of disease and information [1] to the for-
mation of collaborations [2,3]. The evolution of networks
has been a popular research topic since the Barabasi-Albert
model demonstrated that growth through preferential attach-
ment can explain a fundamental property of networks—their
heavy-tailed degree distributions [4,5]. More recent research
has studied another fundamental aspect of network growth,
known as densification, where the number of links increases
superlinearly with the number of nodes [3]. Densification
can create advantages for larger systems: For instance, in
collaboration networks, it provides more opportunities for
researchers at larger institutions over smaller ones [2]. Several
network growth models have been developed to help explain
mechanisms of specific networks, such as gene regulatory
networks [6,7], or provide general mechanisms of patterns
seen in empirical data, such as fitness [8], graph spectra [9],
or copying mechanisms [2,10,11], among others [12–15].

Growth of higher-order structures in networks is a less
studied aspect of network growth, but is critical to our under-
standing of a range of phenomena, including disease spread
[16]. Although some higher-order structures, such as triangles
[17], have long been known to play an important role in net-
work phenomena, less attention has been devoted to how these
and higher-order motifs form in growing networks. Recent
research, notably by Bhat et al. [10] and Lambiotte et al.
[11], has offered potential mechanisms that predict how edges
and larger cliques will scale as a function of network size.
[For clarity, a clique of size k is a fully connected subgraph,
with k nodes and k(k − 1)/2 edges]. The mechanism of clique
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formation proposed by Lambiotte et al., however, has not been
tested empirically before.

In this paper, we study clique formation in growing net-
works. Figure 1(a) considers the case of an empirical network
of user interactions on the question-answer website known
as Math Overflow [14] (answers to questions, comments to
questions, and comments to answers). Plotting the number
of cliques of differing size k as a function of network size
(measured by the number of nodes), we see that the number of
edges (k = 2) grows superlinearly with network size. Network
degree therefore increases with network size, consistent with
previous results [2,3,10,11]. But crucially, we observe that
the number of triangles (k = 3) and larger cliques grows even
faster, leading to an increased level of redundant connections
in the network. This effect, which we call clique densification,
is found in many empirical networks (see also Fig. S1 in the
Supplemental Material [18], which shows results for other
networks [14,19–22]). We also find that these networks form
links locally, i.e., between nearby nodes, and preferentially
connect to high-degree nodes. Furthermore, the effect of 2-
cliques being overtaken by increasingly large clique sizes in
Fig. 1(a) gives rise to an intriguing envelope structure that
itself appears to follow a power law.

In order to explain our findings, we propose the local
preferential attachment model (LPAM) that combines two
prevalent mechanisms in networks: Copying (linking not only
to a target but also to some of its neighbors) [23], and preferen-
tial attachment (linking preferentially to higher-degree nodes).
While copying alone can explain some network densification,
it does not explain why the representation of large cliques
grows so rapidly in networks. Similarly, preferential attach-
ment cannot explain densification at all. The two mechanisms
together, however, are key to understanding how such dense
substructures arise in networks. These substructures can be
useful, for example, when links are removed because they
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FIG. 1. (a) Number of cliques of a given size vs the number of nodes in the network for the Math Overflow question-answer website [14].
See also Fig. S1 in the Supplemental Material [18] for results on other networks [14,19–22]. (b) Local preferential attachment model (LPAM)
preferentially attaches to higher-degree neighbors of the target node. A new node (red) connects to a random target node (green), as well as to
the target node’s higher-degree existing neighbors (purple). (c) Scaling laws vs clique size for LPAM, node copying mechanism of Lambiotte
et al. [11], Forest fire model [3], and Math Overflow data.

provide redundancy that maintains network connectivity. This
may help us understand seeming inefficiencies in network
formation, as the density of these subgraphs may preserve
the giant connected component of a network. Moreover, the
copying and preferential attachment mechanisms could as-
sist in explaining the formation of dense subcommunities in
networks [24]. Our work provides a new understanding of
how network structure evolves and can help account for these
behaviors.

II. METHODS

In this section, we describe how cliques in a network are
counted. We define our model that better explains how cliques
scale super-linearly with network size, and we discuss how we
fit this and other models to data.

A. Empirical Networks

The empirical datasets we use are freely available from the
SNAP library [25]. We take 11 graphs that contain temporal
information, ignoring weights and edge direction: College
Messages [19] (nodes are users, and edges are messages
between individuals); an email network at a large European
institution [14] (nodes are users and edges are emails be-
tween users); Reddit hyperlinks within the body and within
the title of posts [20] (nodes are users and edges are links to
comments between users); Bitcoin Alpha and Bitcoin OTC
trust weighted signed networks [21,22] (nodes are users and
edges represent degree of trust, where we ignore the edge
sign); conversations on Ask Ubuntu, Math Overflow, Stack
Overflow, Stack Exchange Super User boards (nodes are users
and edges represent comments to questions or answers, or
answers to questions between users) [14]; and Wikipedia’s
talk pages (nodes are users and edges are comments between
users) [14]. Data are captured cumulatively, such that links
and nodes will appear but not disappear from the first to the
last timestamp.

B. Counting Cliques

It is typically a challenge to analyze high-order network
properties, such as cliques, in part because finding the largest
clique in a network is NP-hard [26]. Pivoter [27], however,
helps speed up clique counting, allowing clique densification
to be studied. Pivoter is based on the succinct clique tree,
which efficiently stores a representation of all cliques in the
network. This is built via an algorithm called pivoting, which
reduces the recursion tree used to find the cliques. We use this
method to study all empirical networks. Code used to model
and analyze data is available at Ref. [30].

C. Local Preferential Attachment Model

We find three attributes of growing networks that we aim to
capture within a single mechanistic model: (a) the number of
cliques scaling superlinearly with the network size, (b) nodes
forming new links with nearby nodes, and (c) nodes prefer-
entially connecting to high-degree nodes. One theoretically
grounded mechanistic model is by Lambiotte et al. [11], in
which nodes enter the network, find a random target node to
connect with, and then also connect to random neighbors of
that target node. Their model provides theoretical predictions
on the scaling laws of edges and higher-order cliques versus
network size, but does not assume any preferential attachment
mechanism.

We therefore expand on this model with LPAM, shown in
Fig. 1(b). Consider a process where, at each time step, a new
node (red node) enters the network. It connects to an existing
target node (green node) chosen uniformly at random, and
also connects to some number of neighbors (purple nodes)
of the target, with preference given to higher-degree nodes
[larger-sized nodes in Fig. 1(b)].

LPAM is characterized by two parameters, p and r. For a
target node of degree k, the marginal probability of establish-
ing a connection to a given one of its neighbors is p, such
that the expected number of new connections is pk. However,
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conditional on the neighbor’s own degree, this probability
depends on r. The parameter r interpolates linearly between
the case of no preferential attachment at all (r = 0), corre-
sponding to the Lambiotte et al. model [11], and the case
of strong preferential attachment (r = 1). Specifically, for the
ith neighbor of the target node, we define the initial scaled
probability

pi = p
ki∑k

j=1 k j/k
, (1)

where ki is the degree of the ith neighbor. If pi exceeds
a threshold level p + (1 − p)r, then the “excess” probabil-
ity pi − (p + (1 − p)r) is spread over the probabilities of
connecting to other neighbors of the target node, giving
new probabilities p′

j = p j + (pi − (p + (1 − p)r))/(k − 1).
As this may result in certain probabilities exceeding p + (1 −
p)r, the process is iterated until all probabilities fall below that
threshold. The end result is an expectation value independent
of r; we continue to connect to pk nodes on average, but with
a preferential attachment to higher-degree nodes. The thresh-
old level allows us to smoothly transition between strictly
preferential attachment (r = 1) and the Lambiotte et al. node
copying model [11].

For a network with N nodes and L(N ) links, the network
growth mechanism implies, as in [11],

L(N + 1) = L(N ) + 1 + 2p
L(N )

N
. (2)

Following the same theory as in Bhat et al. [10], this results in

L(N ) =
⎧⎨
⎩

N/(1 − 2p) p < 1/2
N ln N p = 1/2
A(p)N2p p > 1/2

, (3)

i.e., the number of links scales superlinearly for p >

1/2, where A(p) = [(2p − 1)�(1 + 2p)]−1. Sadly, because pi

depends on the other neighbor degrees k j , higher-order depen-
dencies are not solvable, such as the number of triangles as a
function of N . We instead calculate scaling laws numerically
by taking a linear fit of the log of the number of cliques versus
log of the network size [see Fig. 1(a)] for different realizations
of this model.

D. Fitting Models

Another methodological contribution of our work is fitting
a clique densification model to empirical data of clique scal-
ing. We measure the distribution of clique sizes for a given
network size and compare this distribution to our model’s
prediction (see an example of this distribution in Fig. S2 in
the Supplemental Material [18] for our model and competing
models [3,11]). We find the parameters that fit the empir-
ical distributions best across several network sizes, which
can be characterized by maximizing the likelihood function
averaged over the network sizes, N . We call this metric
MeanMLE. Each N are log-spaced steps between which the
network grows 10% until we reach the maximum network
size. MeanMLE allows us to find parameters and models with
the best overall fit to data, rather than the best at an arbitrary
time point.

When fitting data, we discard model instances that will
yield low likelihoods and remove models that time out com-
putationally (take more than a few hours to run). We show in
Fig. S8 in the Supplemental Material [18] that each realiza-
tion can have clique frequencies vary wildly for LPAM, and
the wide variance can, in turn, sometimes make calculating
cliques computationally infeasible. This occurs rarely, how-
ever. For example, out of 150 000 instances across the three
models used to fit Math Overflow, only 135 instances (0.09%)
are discarded.

The LPAM, forest fire [3], and copying (Lambiotte et al.,
[11]) models all have parameters constrained to lie between
zero and one. The entire parameter range is taken when
models are fit and the parameters are randomly realized and
rounded to the nearest 0.01, with five realizations on average
for each parameter value. For the forest fire and LPAM, there
are two parameters whose range is between zero and one,
therefore there are 5 × 101 × 101 or approximately 50 000 re-
alizations for each dataset. In contrast, for the copying model,
there is only one parameter and therefore 5 × 101 = 505 re-
alizations.

III. RESULTS

We compare the statistics of several empirical graphs
against all candidate models: The forest fire model [3], which
was the first of two models to explain densification; the copy-
ing model [11], which provides theoretical predictions for
clique scaling; and LPAM. While there are many other po-
tential models one could compare against [12–15], our results
show that LPAM captures basic aspects of network growth
with a simple theoretically-grounded mechanism.

To test the importance of preferential attachment [4], we
measure the mean degree of the target node’s neighbors to
which a new node connects, divided by the mean degree of all
the target node’s neighbors, averaged over all network sizes
sampled. Preferential attachment would imply that this ratio
is greater than one. In Fig. 2, we show our findings for all
networks studied. While the copying model has a ratio of
nearly one, implying no significant preferential attachment,
the empirical data show a ratio significantly greater than one
(strong preferential attachment) which is better captured with
LPAM. See Fig. S4 in the Supplemental Material [18] for fur-
ther support of the consistency of these results across different
empirical datasets [14,19–22].

We also plot the mean distance between nodes before they
connect to each other, and compare this distance to a null
model (connecting between random nodes), as well as to
the candidate models shown in Fig. 3 (similar plots are seen
for other datasets [14,19–22] in Fig. S5 in the Supplemental
Material [18]). We find that nodes form links to nearby nodes
(the distance is smaller than the null model), while the models
assume even closer distances—neighbors of neighbors, im-
plying a distance of two. We therefore qualitatively capture
the closeness of link formation, although the models tested do
not fully address the links that are formed at a distance greater
than two. Capturing these nuances are left for future work.

Furthermore, we explore how the different mechanisms
capture the scaling exponents of different clique sizes. We
show in Fig. 1(c) that exponents increase significantly with
clique size, which is qualitatively captured from the copying
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FIG. 2. Effect of preferential attachment. The y axis shows the mean degree of a target’s neighbors that a new node connects to, averaged
across all nodes at a given timestep, divided by the mean degree of all of the target’s neighbors, again averaged over all nodes at a given timestep.
When this ratio is greater than one, nodes preferentially connect to higher-degree neighbors. Empirical data (gray bars) are compared against
the node copying mechanism (light blue) [10], the forest fire model [3], and LPAM. Datasets are College messages (CollegeMsg) [19]; emails
at a large European institution (email-Eu-core-temporal) [14]; Reddit hyperlinks within the body of a Reddit post (soc-redditHyperlinks-
body), or in the title (soc-redditHyperlinks-title) [20]; Bitcoin Alpha and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-
bitcoinotc) [21,22]; conversations on Ask Ubuntu (sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and
Stack Exchange Super User (sx-superuser) boards [14]; and Wikipedia’s talk pages (wiki-talk-temporal) [14]. Error bars are standard errors of
this ratio across all sampled network sizes.

mechanism [10,11] but this model has a lower exponent than
what we find empirically. (This is also consistent with what
we find in other datasets [14,19–22], shown in Fig. S6 in
the Supplemental Material [18].) LPAM, however, can better
capture the scaling law exponents, and therefore help us un-
derstand why extremely dense cliques are unusually common
in large networks. While the performance is comparable with
the forest fire model, LPAM provides a clearer mechanism to
explain this behavior. We also show in Fig. S3 in the Sup-
plemental Material [18] that LPAM captures the mean clique
size better than the competing models [3,11] for many datasets
[14,19–22].

In order to determine the best overall model among these
three, we take the mean Kullback-Leibler (KL) divergence
[28] between model and empirical clique size distributions
(details in Fig. S7 in the Supplemental Material [18]). We
find that LPAM and the forest fire model have less error
(lower KL divergence) than the copying model of Lambiotte
et al. [11], which suggests that the Lambiotte et al. model
may not fully capture how networks grow. Although LPAM
can sometimes outperform the other models, we do not claim
that another model cannot fit data even better. The main goal

of our paper is to instead provide a theoretically-motivated
mechanism beyond the copying model.

Finally, we can study ablation of LPAM either by removing
node copying or removing preferential attachment. Setting
r = 0, we remove traditional preferential attachment, and the
model simplifies to the node copying model of Lambiotte
et al. [11], a poorer-fitting model. Alternatively, we can re-
move node copying and have nodes connect to other nodes
preferentially based on degree. This simplifies LPAM to the
Barabasi-Albert model [4], whose degree is fixed independent
of network size. Because neither simplification fits data as
well, LPAM is an effective mechanism to reproduce the results
we observe.

IV. CONCLUSION

We observe that cliques scale superlinearly with network
size, therefore we observe strong patterns in the higher-order
structure of networks. Moreover, we observe that scaling ex-
ponents vary significantly for large and small cliques in a
growing network. We further observe nodes connect locally
(e.g., to neighbors of neighbors) and confirm previous analysis
that nodes have preferential attachment. We develop a mecha-
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FIG. 3. Nodes make local connections. The distance between
pairs nodes prior to forming a mutual connection with a new node.
Distance between randomly chosen pairs in the College Messaging
dataset [19], and the empirical distance between nodes prior to con-
necting to a mutual new node. Other examples show similar results,
see Fig. S5 in the Supplemental Material [18] for other networks
[14,19–22].

nism, LPAM, to explain these patterns. LPAM is an extension
of previous mechanisms in which a new node attaches to a tar-
get node and preferentially to the target node’s higher-degree
neighbors. We carried out an ablation study to show this is one

of the simplest mechanisms to explain the empirical patterns
we measure.

There are a number of ways this method could be improved
in future work. First, the mechanism is not theoretically
grounded for cliques of order k > 2. Next, LPAM does not
fully match empirical data, which is both a disadvantage and
an advantage in that it greatly simplifies the rich complex
patterns that each observational network encodes. We notice
in Fig. S7 in the Supplemental Material [18], for example,
that LPAM performs worse than or similarly to the competing
forest fire model for small networks, such as the College
Messages or cryptocurrency networks. This points to finite
size effects that our model overlooks. Even when the model
performs well, LPAM’s exponents are often lower than the
empirical data (Fig. S6 in the Supplemental Material [18] for
other networks [14,19–22]), and the simulated nodes connect
to closer neighbors than in empirical data. This motivates ex-
tensions of LPAM to address finite size effects and the strong
relation between clique size and scaling exponent. One way
to improve this model, which might address some of its lim-
itations, includes having new edges connect between two old
nodes in the network with some probability, which is similar
to the Newman-Watts small world model [29]. Another way
to improve the model could be to seed the model with a real
network as an initial condition. Finally, we assume that the
fitted scaling laws are asymptotic, but this needs to be tested
with more networks, especially with sizes in the hundreds
of millions to billions (which our current computing power
cannot tolerate).

The code is available in Ref. [30].
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FIG. S1. The number of cliques versus network size in empirical data. Datasets are College messages (CollegeMsg) [1],
emails at a large European institution (email-Eu-core-temporal) [2], Reddit hyperlinks within the body of a Reddit post
(soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title) [3], Bitcoin Alpha and Bitcoin OTC trust networks
(soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5], and conversations on Ask Ubuntu (sx-askubuntu), Math Overflow (sx-
mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange Super User (sx-superuser) boards [2], and Wikipedia’s
talk pages (wiki-talk-temporal) [2].
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FIG. S2. A qualitative comparison of clique size distributions
for varying network sizes. The empirical distributions from
Wikipedia’s talk pages (gray lines) [2] moves to the right over
time, and is better captured by LPAM and the Forest Fire
models [6] than Lambiotte et al. [7].
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FIG. S3. Mean clique size versus network size for empirical data and models. Means and standard errors are from five
model realizations on average. Datasets are College messages (CollegeMsg) [1], emails at a large European institution (email-
Eu-core-temporal) [2], Reddit hyperlinks within the body of a Reddit post (soc-redditHyperlinks-body), or in the title (soc-
redditHyperlinks-title) [3], Bitcoin Alpha and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5],
and conversations on Ask Ubuntu (sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and
Stack Exchange Super User (sx-superuser) boards [2], and Wikipedia’s talk pages (wiki-talk-temporal) [2].
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FIG. S4. Preferential attachment versus network size. The y-axis of each plot is the mean degree of newly connected nodes
divided by the mean degree of random neighbors. Values greater than one indicate connected nodes have a higher degree
than random neighbors, showing a preferential attachment (see Methods). In gray are empirical data, while blue, green,
and red lines indicate the node copying model of Lambiotte et al. [7], LPAM (our model), and the Forest Fire model [6],
respectively. Datasets are College messages (CollegeMsg) [1], emails at a large European institution (email-Eu-core-temporal)
[2], Reddit hyperlinks within the body of a Reddit post (soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title)
[3], Bitcoin Alpha and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5], and conversations on
Ask Ubuntu (sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange Super
User (sx-superuser) boards [2], and Wikipedia’s talk pages (wiki-talk-temporal) [2].
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FIG. S5. Nodes form links locally. The geometric mean distance between newly formed links (solid gray line) is smaller than
the geometric distance between links formed between random nodes (dashed gray line). Also shown are the node copying
model of Lambiotte et al. [7], LPAM (our model), and the Forest Fire model [6]. Datasets are College messages (CollegeMsg)
[1], emails at a large European institution (email-Eu-core-temporal) [2], Reddit hyperlinks within the body of a Reddit post
(soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title) [3], Bitcoin Alpha and Bitcoin OTC trust networks
(soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5], and conversations on Ask Ubuntu (sx-askubuntu), Math Overflow (sx-
mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange Super User (sx-superuser) boards [2], and Wikipedia’s
talk pages (wiki-talk-temporal) [2].
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FIG. S6. Scaling exponents versus clique size. Scaling exponents are slope of the best fit line in the scaling plot, Fig. S1, for each
clique size. Datasets are College messages (CollegeMsg) [1], emails at a large European institution (email-Eu-core-temporal)
[2], Reddit hyperlinks within the body of a Reddit post (soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title)
[3], Bitcoin Alpha and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5], and conversations on
Ask Ubuntu (sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange Super
User (sx-superuser) boards [2], and Wikipedia’s talk pages (wiki-talk-temporal) [2]. Bars are standard errors across model
realizations.
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FIG. S7. Mean KL Divergence for each model across each dataset studied. Lower values indicate a better fit to data. Datasets
are College messages (CollegeMsg) [1], emails at a large European institution (email-Eu-core-temporal) [2], Reddit hyperlinks
within the body of a Reddit post (soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title) [3], Bitcoin Alpha
and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [4, 5], and conversations on Ask Ubuntu
(sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange Super User (sx-
superuser) boards [2], and Wikipedia’s talk pages (wiki-talk-temporal) [2].

FIG. S8. Three realizations of the LPAM model with p = 0.42 and r = 0.89, which are the best-fit parameters for Math
Overflow (sx-mathoverflow) [2]. We notice a consistent scaling law, as demonstrated in the low standard deviation of exponents
in main text Fig. 1c, but the absolute number of cliques can vary significantly for each realization.
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