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Background 3

 A fundamental challenge is to make reliable 
predictions about where failure occurs in order 
to gain insight into the physical structures 
associated with failure. 

 Prior work has used classical ReaxFF molecular 
dynamics (MD) simulations to model fracture 
nucleation of  silica-based glasses in aqueous 
environments, but developing structure-property 
relationships using this simulation method is 
computationally expensive.  

 This project aims to develop a surrogate model 
to make connections between atomic structure 
and fracture nucleation.  

 By creating a graph theoretic description of  the 
material we train a supervised Machine 
Learning algorithm on MD simulation data.



Molecular Dynamics Simulations

• Previously we have used molecular dynamics (MD) to successfully predict a wide range of  detailed 
properties that cannot be obtained with continuum methods  

• Simulations are of  size 15×15×4 nm3, containing approximately 75,000 atoms 

• Uniaxial tension at a constant strain rate of  5 × 108 s−1 in the horizontal direction for 1 ns 
• Two types of  conditions for simulations 

• dry:  SiO2 in vacuum 

• wet:  SiO2 immersed in H2O 

• Simulation output provides physical descriptors, such as: 

• x, y, z coordinates for each atom 
• bond configuration 

• 200 simulations, approximately 10GB of  data per simulation
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Simulation of Fracture Nucleation 5

t=580ps t=640ps

t=750pst=690ps



Our Current Objectives

• Computation time for a single run is ≈10,000 CPU hours, making it difficult to study systems 
directly via simulations 

• We aim to develop supervised learning methods, trained on MD simulation data, that generate rapid 
predictions of  where and when atomic-scale fractures occur in samples of  silicate glasses in an 
aqueous environment under stress. 

• Generate predictions under multiple environmental conditions. 

• Validate on existing MD simulation results. 

• Relate predictions to specific features characterizing local atomic structure. 

• Provide new insight into how local structure leads to fracture and failure. 
• Examine the impact of  aqueous environments on fracture nucleation.
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Machine Learning Approach 7

• Physical Features 

• Cell volume 
• Atom displacement 

• Stress tensor 

• Local elasticity 

• Kinetic and potential energy

• Topological Features 

• Coordination number 

• Number of  bridging oxygens 

• k-neighborhood 

• Bond activity 
• Bond angle

In this project we are training machine learning models using the following features which are 
obtained using MD simulations:



Example of Physical Features

 The Voronoi cell volume, vi, is a local density measure.  It measures how large the empty space is 
surrounding an atom i. 
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Example of Physical Features 9

• Elasticity is given by the slope of  the stress-
strain curve. 

• Stress may not increase uniformly over all 
regions when placed under load. 

• Local elasticity, as defined through an 
appropriate level of  local spatial averaging, may 
serve as an indicator of  physical changes 
leading to nucleation.



Example of Topological Features

 Number of  Bridging Oxygens: In a Qn unit, an Si atom is surrounded by n bridging O atoms, each 
forming an Si–O–Si group. The value of  n supplies crucial network connectivity information. 

• With the reduced graph representation, the number of  bridging oxygens is equivalent to the 
degree of  a vertex 

• ML algorithms may benefit from having node degree as an explicit node-based feature 

 k-neighborhood: A crucial assumption in our modeling approach is that structure beyond nearest-
neighbor information can help in predicting fracture nucleation.  

• For example, total number of  Si atoms within k bridging oxygens of  a given Si atom without 
any hydrogen bonds. 

• For increasing k, these features consider local neighborhoods of  increasing size. 
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Machine Learning Methods

 Objective is to produce surrogate model of  MD simulations using supervised learning. 

• Static approach: Use linear regression to determine feature importance. 

• Dynamic approach: Use recurrent neural networks (RNN) to learn dynamics leading to 
nucleation. 
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Logistic Regression

 We aim to estimate relative feature importance quickly and easily before using more computationally 
intensive modeling techniques. To do so, we use: 

• Target identification: uses the volume of  the entire Qn unit thresholded to identify only atoms 
within  the region of  the crack at nucleation time T 

• Features: uses physical and topological at a fixed time t < T as described above 

This allows us to quickly determine the best methods to increase the predictive power of  the RNN. 
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Predicting 650ps from 600ps

Logistic Regression

 Because of  the significant class imbalance – only ~1% of  atoms lie on the crack face at t=650 – we 
spatially averaged the features and target definition and lowered the threshold to include a larger 
neighborhood around the crack.
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Dynamic Approach: Recurrent Neural Network

RNN trains on an entire time series, learning dynamics of  a process which it stores using a “memory” 
of  internal states.  

Training input is time series of  features from MD simulation data. 
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Dynamic Approach

The ultimate goal of  this approach is to generate a model which learns the time evolution of  the 
system and, given some early time series for a different system, can generate accurate predictions 
about its time evolution during nucleation.  

Our current model trains the model on each of  the atoms individually with the feature(s) for each 
atom as input & output 

• Train with time steps 0-590ps as warmup, predict 600ps  

• Test with time steps 0-600ps as warmup, predict 610ps 

• Batch size is all atoms in a single simulation, model has a single layer with hidden size 64, and 
trains for 1500 epochs 

Given that each atom has graph topological features associated with it, training on individual atoms 
should be sufficient for capturing information about the graph structure.
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Prediction Generated from Time Series 16

Predicted Cell Volume at t=610 Actual Cell Volume at t=610



Autoregressive Recurrent Neural Network

 An autoregressive RNN predicts individual time steps which are used recursively to make predictions 
about subsequent time steps. 

 Training input is time series of  features from MD simulation data.
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Summary & Next Steps

• Logistic regression: machine learning methods are capable of  generating meaningful predictions 
about where fracture nucleation will occur using features at earlier time steps  

• Recurrent Neural Network: including the entire time series in our model should enhance the 
predictions made by logistic regression, and has demonstrated the ability to accurately predict the 
system at subsequent time steps 

• Autoregressive Model: moving forward, we should be able to recursively generate new predictions 
spanning the ~50ps where nucleation generally occurs in order to determine where and when 
fractures nucleate when stress is applied to a system 

• Using the autoregressive model to study fracture nucleation, we may examine how local atomic 
structure influences fracture and failure much more quickly than using MD simulations directly
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Thank You!


