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Addressing quantum’s “fine 
print” with efficient state 
preparation and information 
extraction for quantum algorithms 
and geologic fracture networks
Jessie M. Henderson 1,4*, John Kath 2,4, John K. Golden 1, Allon G. Percus 2 & Daniel O’Malley 3

Quantum algorithms provide an exponential speedup for solving certain classes of linear systems, 
including those that model geologic fracture flow. However, this revolutionary gain in efficiency does 
not come without difficulty. Quantum algorithms require that problems satisfy not only algorithm-
specific constraints, but also application-specific ones. Otherwise, the quantum advantage carefully 
attained through algorithmic ingenuity can be entirely negated. Previous work addressing quantum 
algorithms for geologic fracture flow has illustrated core algorithmic approaches while incrementally 
removing assumptions. This work addresses two further requirements for solving geologic fracture 
flow systems with quantum algorithms: efficient system state preparation and efficient information 
extraction. Our approach to addressing each is consistent with an overall exponential speed-up.

Quantum algorithms promise to revolutionize the solving of linear systems, which are essential components 
of problems in medicine, finance, urban development, and nearly any field that can be classified as a natural 
or applied  science1. Several quantum  algorithms2–8 can provide a provable exponential speedup over classi-
cal linear solvers. However, remarkable though such gains are, they do not come without cost, nor without 
 complication9. Problems of interest must be curated to satisfy algorithm-specified constraints. Moreover, the 
quantum algorithms themselves must account for the complexity of transporting information to and from the 
quantum computer via processes that bear little resemblance to classical  counterparts9. Otherwise, all theoreti-
cal intrigue aside, quantum linear-systems algorithms become toothless: we know the algorithm could compute 
the solution exponentially faster than possible classically, but we can neither supply the problem nor extract the 
solution efficiently enough to benefit from this  speedup10. These difficulties are further complicated by context-
specific considerations; for example, it would be pointless to prepare and solve a linear system if we cannot extract 
information that is of practical relevance for the problem at hand.

Consequently, efficient approaches for both preparing the system to be solved and extracting useful informa-
tion from quantum computers are as important as quantum algorithms themselves. This paper addresses these 
issues within the context of quantum algorithms for geologic fracture networks; while the approaches are fairly 
general and thus may have utility for applications beyond geologic linear systems, we explicitly addresses only the 
realm of geologic fracture problems. Linear systems representing fracture networks are too large to solve in their 
entirety with even the most sophisticated classical  approaches11,12, and reducing problem size requires methods 
such as upscaling, which supply only approximate solutions that may neglect important features of the network. 
For example, when small fractures are neglected, a network exhibiting percolation—complete connectivity of a 
fracture region—might no longer manifest that  effect13. Such modelling issues make geologic fracture problems 
a prime candidate for benefiting from the speedup provided by quantum algorithms, so long as we can satisfy 
the algorithmic constraints and provide efficient state preparation and information extraction. Previous work 
has addressed solving fracture flow problems with quantum  algorithms14–18 while making assumptions about the 
auxiliary issues.  Reference19 then addressed the requirement of well-conditioned matrices by developing effective 
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preconditioning permitting quadratic speedup for systems representing geologic fracture problems. Here, we 
address two further constraints of efficient state preparation and solution extraction.

The remainder of the paper proceeds as follows. We first provide an introduction to modelling geologic frac-
ture networks with linear systems, including the relationship to quantum algorithms. We then present methods 
for state preparation and information extraction that have acceptable complexities and that are readily usable by 
human developers, including on noisy near-term quantum hardware. We include toy examples for both the state 
preparation and information extraction approaches to clarify method usage. Finally, we conclude with a brief 
discussion of future work, which includes empirical study of efficient, start-to-finish solution of varying-scale 
geologic fracture problems on newly-available, higher-qubit, less error-prone quantum hardware.

Background
Quantum algorithms for geologic fracture networks
Simulating geologic fracture networks is one of the most challenging problems in geophysics, in part because 
of the large range over which fractures  exist20–23. Systems modelling fractures with sizes between 10−6 and 104 
m cannot be solved accurately in their entirety on classical machines, and they sometimes cannot be accurately 
upscaled either. Specifically, information lost during upscaling pertains to small fractures that can have a critical 
effect on the fracture network; for example, the smallest fractures can determine whether the network crosses a 
percolation threshold, which has a substantial impact on fluid  flow13.

Quantum algorithms for solving linear systems are not burdened by the same constraints as their classical 
counterparts. The properties of quantum mechanics endow them with a fundamentally different physics—and 
thus a fundamentally different mathematics—that allows for efficiently solving problems that cannot be solved 
on classical computers using a reasonable amount of memory or  time10. Previous work has both explained and 
demonstrated use of quantum algorithms for solving linear systems problems in the geologic fracture  realm14–17, 
but with the caveat that future work would need to explore efficient mechanisms of introducing the problem to 
the computer and extracting meaningful information from the solution. In this work, we consider those issues 
for pressure-identification problems of the form ∇ · (k�h) = f  , where k is permeability, f is a fluid source or 
sink, and h is the pressure to be computed. These problems can be discretized and written as Ax = b , where 
the pressure for each discretized node is stored in x . Then, quantum algorithms for solving linear systems can 
compute a normalized vector that is proportional to that  solution2.

One such algorithm—which has been considered for geologic fracture network problems in Ref.17—is the 
Harrow-Hassidim-Lloyd (HHL) algorithm, which was the first for solving linear systems with quantum circuits. 
It provides an exponential speedup over classical algorithms under certain conditions, including constraints on 
matrix sparseness and condition  number2. Because geologic fracture flow systems can be made to satisfy such 
conditioning  requirements19, and because they are unavoidably large in their complete form, such systems are 
ideal candidates for the HHL  algorithm17, assuming that we can efficiently specify the problem and extract the 
solution. Approaches to these information-transfer tasks are not algorithm-independent; the details can depend 
upon how a given quantum algorithm prepares the solution vector x . However, there are often similarities in 
quantum linear systems algorithm structure that would make state-preparation and information-extraction 
approaches inter-algorithmically applicable. In this work, we will directly consider only the HHL algorithm 
while acknowledging that our methods for state preparation and information extraction may be more broadly 
applicable.

Brief introduction to HHL
The HHL algorithm prepares a solution proportional to that of the N × N system Ax = b2. A single execution 
of the algorithm has a complexity of O

(

log (N)s2κ2/ǫ
)

 , where N is the size of system, s is the sparseness of the 
matrix, κ is the condition number of the matrix, and ǫ is the additive error within which the system is  solved2,24. 
As with most quantum algorithms, HHL is at once fairly simple in qualitative terms and quite subtle in quan-
titative ones. Given the algorithm’s wide applicability and dramatic speedup, several works look to provide 
detailed—yet accessible—treatments of the algorithm; for more information, please see Refs.25  or26. While this 
work is not intended as a detailed introduction to HHL, it is worth briefly describing the overall algorithm and 
highlighting a few relevant points.

HHL prepares a normalized solution to x by leveraging the fact that x =
∑N

i=1 �
−1
i bi|ui� , where |ui� is the ith 

eigenvector of A and �i is its associated eigenvalue. Specifically, as shown in the block diagram of Fig. 1, the algo-
rithm requires two registers of qubits and an ancilla qubit. The b-register begins as storage for normalized values 
proportional to those in the right-hand side vector of b , and if the ancilla is measured as 1, then it ends storing 
|x� , which is a normalized vector proportional to x . HHL therefore requires an efficient mechanism for convert-
ing the b-register (with nb qubits) from the fiduciary state of |0...0� to a state in which each qubit holds two values 
of the normalized b : |bReg0� = b0|0� + b1|1�, |bReg1� = b2|0� + b3|1�, . . . , |bRegnb � = b2nb−2|0� + b2nb−1|1�.

The w-register is a working register that is used to store intermediate values throughout the computation. 
Specifically, it is used during the subroutines of Quantum Phase Estimation (QPE) and Inverse QPE, which 
identify and isolate the eigenvalues �i of A alongside a normalization constant that makes the final state propor-
tional to (rather than equal to) x . Consequently, the information about A necessary to solve the linear system 
is encoded in the QPE subroutine, and HHL’s efficiency requires that A be well-conditioned and sparse for this 
information-transfer process to avoid a complexity greater than that of the entire solve.

Finally, the ancilla qubit determines whether |x� is properly stored at the end of the algorithm; measuring it 
decouples the solution to the system ( |x� = γ

∑N
i=1 �

−1
i bi|ui� , where γ  is a normalization constant) from 
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associated ‘garbage’ information 
(

|x� =
∑N

i=1

√

1− γ 2

�
2
i
bi|ui�

)

 that is added throughout the computation. Thus, 

HHL requires multiple circuit executions to account for when the ancilla is measured as a  zero24.
Before discussing HHL’s utility for geologic fracture problems, it is worth noting that the HHL algorithm is 

known to be impractical for near-term quantum hardware. This is a consequence of the QPE and inverse QPE 
subroutines, both of which require more qubits that are less prone to decoherence than are generally available 
on today’s machines.27–33. Nonetheless, the algorithm is of import, because quantum hardware is rapidly grow-
ing and becoming less error-prone34–36, suggesting that the existing practical limitations of HHL are temporary, 
especially given variations on HHL that are tailored to problems with simpler QPE and inverse QPE subroutines 
that are consequently less resource  intensive37,38.

Figure 2 illustrates the relation between a geologic fracture flow problem and a circuit implementing 
HHL. First, the region of interest for a particular problem (say, the ∇ · (k�h) = f  of above) is discretized to 
form A and b . Then A determines the parameters in the fixed structure of a QPE subroutine. A state prepa-
ration procedure encodes the values of b in the b-register, and both the ancilla qubit and the qubits in the 
w-register begin as |0� . If, at algorithm completion, the ancilla is measured as 1, then the problem solu-
tion—representing the pressure at each node of the discretization—is stored in what began as the b-register: 
|bReg0� = x0|0� + x1|1�, |bReg1� = x2|0� + x3|1�, . . . , |bRegnb � = x2nb−2|0� + x2nb−1|1�.

Useful though such conceptual schematics are, they provide no guidance on efficiently encoding information 
into the b-register or extracting the eventual solution. As Scott Aaronson recognizes in his oft-cited remarks 
on the “fine print” of quantum  algorithms9, this is in part because such determinations are often very difficult 
problems in and of themselves, and indeed can be so difficult that the issue of transferring information to and 

Figure 1.  A block diagram of HHL. After a separate, non-HHL algorithm has prepared the right-hand-side 
vector, b , HHL applies QPE to extract the eigenvalues and eigenvectors from the matrix, A. Then, the algorithm 
prepares the eigenvalues for extraction from their entangled state using inverse QPE before measuring an ancilla 
qubit to determine if the operation was successful. A measurement of 1 indicates that |x� ∼ x is stored in the 
b-register, while a value of 0 indicates a probabilistic circuit failure, the likelihood of which is included in the 
complexity of HHL via ǫ.

Figure 2.  A schematic illustrating how information is transferred from a geologic fracture flow problem into an 
HHL circuit that solves for the pressure at each discretized node.
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from the quantum computer bars use of quantum approaches that would otherwise be preferable to classical 
variants. For example, obtaining the entirety of |x� requires O(N) measurements, which requires running the 
entire HHL circuit O(N) times, thus negating the complexity benefit provided by HHL in the first place. The next 
subsection introduces two subroutines that we will use to address this issue.

The Swap and Hadamard tests
The swap test is a straightforward quantum subroutine that obtains the overlap between two n-qubit quantum 
states using n controlled-swap gates, two Hadamard gates, and one  measurement39,40. The circuit must be run 
O(1/ǫ2) times to obtain a solution that is within a specified additive error, ǫ , of the true overlap. Subfigure a of 
Fig. 3 illustrates the circuit structure; by measuring the single qubit and obtaining the probability that it is 0, the 
inner product between the two registers is given as |�φ|ψ�|2 = 1− 2p(0) . It is thus worth noting that the swap test 
is capable only of determining the magnitude of the inner product and not its sign; the slightly more complicated 
Hadamard test addresses this, as illustrated in Subfigure b of Fig. 3. Specifically, the Hadamard test for computing 
inner products uses two Hadamard gates, two Pauli-X gates, and two controlled-U gates for unitaries U that pre-
pare the states whose overlap is to be  computed41. For two n-qubit registers, the complexity is still O

(

1/ǫ2
)

 , and 
the inner product is given by Re[�φ|ψ�] = 2p(0)− 1 . (The imaginary component can be computed with a slight 
adjustment, but since geologic fracture network problems do not require complex values, we will not consider 
that here). Below, we will utilize these subroutines to efficiently extract the average pressure from a user-specified 
set of nodes after solving for the pressure in all nodes. But first, we describe efficiently preparing the b-register.

Efficient state preparation
One of HHL’s critical assumptions is availability of an efficient method for preparing the quantum state of the 
b-register. The preparation of a general state b can require a computational effort of �(2nb ) , negating the advan-
tage of a quantum computation. Our approach, based on the algorithm of Gleinig and  Hoefler42, enables efficient 
generation of the quantum state b specifically tailored to subsurface flow problems.

For our fracture network problems, b encodes the boundary conditions. We will consider examples with a 
combination of Dirichlet boundary conditions, which specify pressure, and Neumann boundary conditions, 
which specify flux. Specifically, we present two scenarios that arguably represent the two most common scenarios 
considered when modelling subsurface flow.

Pressure gradient
In the first scenario, we consider Dirichlet boundary conditions where the left boundary experiences high pres-
sure while the right boundary has low pressure, and we impose Neumann boundary conditions with zero flux at 
the top and bottom. In this case, preparing the state of b is straightforward. Without loss of generality, assume that 
nb is even, and let m = nb/2 . The b-register starts in a state of 2m zero qubits ( |0m�|0m� ), and we apply Hadamard 
gates to the second m qubits to put them in a uniform superposition, giving

This produces a circuit with nb/2 gates. Figure 4 depicts preparing b under a pressure gradient when nb = 8.

Fluid injection
The remainder of this section discusses the second scenario. We consider Dirichlet boundary conditions where 
the left and right boundaries maintain zero pressure. We again impose Neumann boundary conditions with 
zero flux at the top and bottom. Additionally, we introduce the concept of injecting or extracting fluid at a small 
number of sites—i.e., wells—in the middle of the domain, which is comparable to Neumann boundary condi-
tions that specify a flux. It is worth emphasizing that, in practice, the number of wells considered in a given 
simulation is constant and typically small, meaning that the number of wells does not increase as the simulation 
mesh is refined.

|0m�
1

√
2m

∑

i∈{0,1}m
|i�.

Figure 3.  Subfigure (a) illustrates the swap test for two n-qubit registers, |φ� and |ψ� , while Subfigure (b) 
illustrates the Hadamard test for two n-qubit states that can be efficiently prepared via the gates Uφ and Uψ.
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Because the number of wells is small, the vector b is sparse, meaning it has few nonzero entries, with the 
total number of non-zero entries equal to the number of injection/extraction wells. In general, a circuit for pre-
paring an nb-qubit quantum state is a sequence of O(2nb ) gates, where multicontrolled operations are used for 
readability. The method of Ref.42 exploits the sparsity of b , taking a classical specification of a quantum state φ 
with W nonzero coefficients as input and producing, in polynomial time, a polynomial-size circuit C that maps 
the initial state |0nb � to φ . Note that W is both the number of nonzero coefficients and the number of injection/
extraction wells.

The algorithm works by enabling efficient transformation of quantum states. These transformations range 
from basis states to zero states using NOT gates to more complex scenarios involving superpositions of basis 
states. The key challenge is preventing the “splitting” of basis states during transformation.  Reference42 relies on 
two crucial techniques: 

1. Controlling the merging of basis states with no more than O(logW) control bits.
2. Using efficiently-implementable gate sequences for multicontrolled operations.

The circuit is generated from a gate library that includes controlled-NOT (CNOT) gates and single-qubit T 
gates. Using this method, the state can be prepared using only O(Wnb) CNOT gates and O(W logW + nb) 
single qubit gates. Since logW is itself O(nb) , this results in a total number of gates that is O(Wnb) , rather than 
of exponential complexity.

Application to fracture networks
The polynomial-sized quantum circuit produced for preparing a sparse state illustrates this algorithm’s practi-
cal relevance for solving geologic fracture flow problems with quantum algorithms. The following examples 
demonstrate efficient state preparation for fracture networks. First, we consider a simple case consisting of two 
intersecting fractures and two injection/extraction sites.

Consider b = (0,−164, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113, 0, 0) where nb = 4 and there are W = 2 nonzero coef-
ficients. In this case, we have

By applying the algorithm of Ref.42, we can generate this state using the circuit depicted in Fig. 5.
Figure 6 depicts a two-dimensional fracture network model involving two fractures intersecting in a †-con-

figuration, with fractal-style recursion of the †-system to generate a more complicated pitchfork fracture network. 
The relative permeability of the fractures as compared to that of the underlying rock is a critical parameter in 
the analysis of fracture systems, and thus, low and high permeability contrast is represented by a gradient scale, 
where the smallest fractures have the least permeability  contrast19. Fluid injection/extraction wells are located 
randomly at sites corresponding to red dots. And, as above, solving this fracture network problem with Neu-
mann boundary conditions requires generating a quantum circuit which prepares the state of a sparse vector b.

We evaluate the performance of the method in Ref.42 applied to this fracture problem. To generate random 
sparse states comprising nb qubits with W nonzero coefficients, we select W distinct basis states |x� , where 
x ∈ {0, 1}nb , from a random, uniform distribution, and we form φ as the superposition of these selected states. 

|b� =
1

√
39665

(−164|0001� + 113|1100�).

Figure 4.  A quantum circuit that prepares the state of b for a fracture flow problem with a pressure gradient 
where nb = 8 . Note that b has 2nb/2 nonzero entries.
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Coefficient values are chosen from a random normal distribution and subsequently normalized to represent the 
weights given to random injection/extraction wells in the problem domain. Note that in a uniform superposition, 
the coefficients of the W selected basis states are equal, and the size of the state-preparation circuit produced 
remains independent of the exact coefficient values, as long as they are nonzero.

In Fig. 7, we explore how the circuit size scales with an increase in W from 1 to 25 while keeping nb fixed 
at nb = 12 . That is, the number of randomly-generated injection/extraction points increases from left to right 
along the horizontal axis. For each value of W, we conduct 5 random state samples. The average gate count is 
illustrated in the figure along with a bar indicating the smallest and largest counts. The quantum circuits pro-
duced of O(Wnb) size are asymptotically better than those produced by general state preparation methods of 
size O(2nb ) for W ≪ 2nb (i.e., when b is sparse).

Efficient information extraction
We now consider a second challenge in applying HHL to geologic fracture systems, namely extracting informa-
tion upon solution completion. Because it is unrealistic to obtain all of the pressures from the quantum comput-
er’s solution, we must consider other quantities of  interest2,10, and in the realm of geologic fracture networks, one 
such quantity is the average pressure in a particular region. Average pressure is a sum of pressures in individual 
nodes divided by the total number of nodes considered, so we can obtain this using the swap test (or Hadamard 
test) with a register that prepares an appropriately complementary state to the |x� nodes whose average we seek. 

Figure 5.  On the left, a simplified two-dimensional fracture network model with two fractures intersecting and 
two random fluid injection/extraction wells at the red dots. The color bar represents permeability on a 
logarithmic scale. b encodes boundary conditions for a 4× 4 grid with 2nb = 16 cells ⇒ nb = 4 . Nonzero 
entries in b correspond to well sites. On the right, a quantum circuit to prepare the state 
|b� = 1√

39665
(−164|0001� + 113|1100�) for this fracture flow problem with Neumann boundary conditions 

(sparse nonzero entries in b).

Figure 6.  An illustration of a two-dimensional fracture network model with fractures that intersect in a pattern 
of fractal-style recursion to generate a pitchfork fracture network. Random fluid injection/extraction wells 
are located at the red dots. The color bar represents permeability on a logarithmic scale. b encodes Neumann 
boundary conditions (sparse nonzero entries) for a 64× 64 grid with 2nb = 4096 cells ⇒ nb = 12 . Nonzero 
entries in b correspond to well sites.
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Specifically, consider an r-register with at most nb qubits, where nb is—as above—the number of qubits in the 
b-register. If that r-register prepares a state such that �r|x� provides the sum of the pressures in a set of nodes, we 
can obtain �r|x�—or at least |�r|x�|—via either the Hadamard or swap tests and can then divide by the number of 
nodes that are in our desired region. Figures 8 and 9 illustrate the structure of circuits for extracting information 
with the swap and Hadamard tests, respectively. The remainder of this section describes swap test information 
extraction, Hadamard test information extraction, and a procedure for generating r states to obtain the average 
pressure for any user-specified region.

Figure 7.  Total gate count (total), CNOT gate count (cx) and T gate count (t) of the quantum circuit preparing 
the state of a sparse vector b . In our system, the number of qubits is fixed at nb = 12 while W, the number of 
nonzero entries in b corresponding to randomly-generated injection/extraction sites, increases from 1 to 25. For 
each value of W, gate counts from 5 random state samples are shown with + symbols, along with their average 
and bars extending from smallest to largest value. Theoretically, the state preparation method’s total gate count 
scales as O(Wnb) , further broken down as O(Wnb) CNOT gates and O(W logW + nb) single-qubit gates.

Figure 8.  A schematic of the circuit structure for extracting average pressure using the swap test. Note that only 
the magnitude of the average pressure is extracted; sign is not.

Figure 9.  A schematic of the circuit structure for extracting average pressure using the Hadamard test. The 
circuit is more complicated than in Fig. 8, but it allows for extracting both the sign and magnitude of the average 
pressure.
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First, the swap test approach. After preparing |x� using HHL, we apply the swap test using an additional 
ancilla qubit and an r-register that contains a state to provide |�r|x�| =

∑

i∈user_elems xi , where user_elems 
is the set of node indices in the region for which average pressure should be computed. By determining the 
probability of measuring the swap test ancilla as zero, we can use a classical computer to obtain the unsigned 
average pressure as follows: Use p(0) to obtain |�r|x�|2 = 1− 2p(0) , take the square root of |�r|x�|2 , and plug into 
avg_press = |�r|x�|

|user_elems| =
∑

i∈user_elems xi
|user_elems|  . The swap test itself (not including the resources required for building 

the r-register, which are analyzed below) requires only one ancilla, two Hadamard gates, and nr controlled-swap 
gates, where nr is the number of qubits required for the r-register. Consequently, if we can build the r-register 
state efficiently, this is an acceptable approach to computing the average pressure in a specified region. It is also 
worth noting that all of these gates are applicable to near-term devices, and the swap test’s complexity of O

(

1/ǫ2
)

 
for a user-desired error, ǫ , is widely recognized and applied as reasonable for the near-term era, as  well8. So, 
although HHL is not yet realistic for near-term devices, this swap test approach should be, and it would certainly 
be for fault-tolerant machines.

Second, the Hadamard test: we first prepare |x� using HHL, and then use an additional ancilla qubit and 
an r-register to prepare |�r|x�| =

∑

i∈user_elems xi , where user_elems is as defined above. Not counting the 
resources required for building the r-register, this requires two Hadamard gates, two Pauli-X gates, and at most 
nr controlled-swap gates. It is worth clarifying how the controlled gates work: the controlled-swap gates transfer 
the components of |x� that will be used in the inner product computation to the r-register, and these controlled-
swaps thus replace the controlled-Uφ gate in Subfigure b of Fig. 3. The controlled-state preparation gate then 
prepares the r-register, as described below. So, to obtain the average pressure, we compute the probability of 
measuring the Hadamard test ancilla as zero, and use it to classically compute Re[�r|x�] = 2p(0)− 1 . We then 
divide by the number of desired nodes to find avg_press = Re[�r|x�]

|user_elems| =
∑

i∈user_elems xi
|user_elems| .

Building the r register
Using either the swap or Hadamard tests requires an r-register that properly extracts sums of equally-weighted 
node values. For the remainder of this section, we will illustrate the r-register-building process for the swap test, 
but using the Hadamard test would require only two modifications. First, instead of computing |�r|x�|2 using 
the probability that the ancilla is zero, we would compute Re[�r|x�] , which does not require taking a square root. 
Second, while the r-register preparation for the swap test does not require controlled gates, each of the gates used 
to build the r-register for the Hadamard test would need to be controlled.

To build the r-register, we must determine both the number of qubits, nr , and what gates need to be applied 
to these qubits such that |�r|x�|2 is a sum of the form |�r|x�| = ξ

∑

i∈user_elems xi . If the quantum computer can 
provide a |�r|x�|2 with that form, then, as long as we know ξ , we can use the few classical computations described 
above to compute the average pressure in the set of nodes specified by user_elems. It is worth noting that our 
approach does not treat the initial state of the qubits in the r-register as a variable to be determined; the initial 
state of each r-register qubit is always the fiduciary state, |0�.

While there is a general procedure for building r-registers that obtain the average pressure in an arbitrarily-
specified set of discretized nodes, special cases offer simpler methods that have fewer steps and that aid under-
standing of the general process. Therefore, we first consider the special cases of an entire row, an entire column, 
and an entire diagonal of discretized nodes using the example region of Fig. 10, which is the simplest possible 
discretized region that satisfies the constraints of being square and having a number of nodes that is a power of 
two. It corresponds to a b-register of nb = 2 qubits, and after applying the HHL algorithm, the final states of those 

qubits are x1|0� + x2|1� and x3|0� + x4|1� , where x = γ







x1
x2
x3
x4






 with a normalization constant γ . Because two nodes’ 

worth of information are stored in each qubit, we will term a ‘pair’ of nodes to be any whose information is stored 
on the same qubit. Thus, using the node-indexing scheme of Fig. 10, we have pairs x1 , x2 and x3 , x4 . When both 
nodes in a pair are included in the desired average pressure region, we will term that group of nodes ‘paired 
nodes.’ When a node is included in the desired region without its paired node, we will term that node a single 
node. Nodes with even indices will be termed ‘even-indexed,’ and vice versa for nodes with odd indices.

Figure 10.  A schematic 2× 2 grid illustrating a discretized region with four nodes, some combination of which 
holds the average pressure we seek to compute.
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The discretized region of Fig. 10 has ten possible average pressures: the average pressure from a single node 
(either x1 , x2 , x3 , or x4 ), from row x1 + x2 , from row x3 + x4 , from column x1 + x3 , from column x2 + x4 , from 
diagonal x1 + x4 , and from diagonal x2 + x3 . First, consider the case of a single node; the ‘average’ pressure of a 
single node is, of course, simply the pressure in that node. Consequently, an r-register-generation procedure for 
obtaining the value in a single node has little utility. Not only is the primary goal of extracting average pressure 
to avoid the costly procedure of sequentially extracting single elements from the solution, but it would also likely 
be simpler to just measure qubits of interest if the goal were to extract a few nodes’ worth of individual pressures. 
Therefore, we will not further discuss the single node case.

Second, consider the rows; both cases require that the r-register prepare a state such that that 
|�r|x�| = rixi + ri+1xi+1 can be simplified to ξ(xi + xi+1) , for ξ = ri = ri+1 and row nodes xi and xi+1 . Note that 
rows are thus comprised of only paired nodes, and applying a Hadamard gate to each qubit in the r-register lends 
such an equal ξ coefficient to both nodes in a pair. So, to build the r-register for an entire row, add a qubit for 
each pair of nodes in the row, and apply a Hadamard gate to each qubit. This allows for computing the pressure 
in, say, the row with x1 and x2 as follows:

Consequently, the r-register preparation circuit for a row requires one qubit for every pair of nodes in the row 
and one Hadamard gate for every pair of nodes in the row.

Second, consider the case of a column, which has two subcases. The first subcase has columns with only 
odd-index nodes, and the second has columns with only even-index nodes; there will never be paired nodes 
in a column. For the even-index subcase, the r-register must use Pauli-X gates to flip the state of the r-register 
qubits from the initial state of |0� to a state of |1� , such that a coefficient of 0 will be multiplied with each of the 
odd-indexed x values in a given qubit pair, and a coefficient of 1 will be multiplied with each of the even-indexed 
x values in the same. In the odd-index subcase, although we need one r-register qubit per desired node in the 
average pressure computation, that qubit need not have any gates on it. This is because every qubit in the r-register 
is initialized to the state |0� , so a coefficient of 1 will already be multiplied with each of the odd-indexed x values 
whose average we seek. Consequently, in the column case, we need one qubit for every node in the desired 
region and one Pauli-X gate for every even-indexed node in the same. Then, the pressure in column x1 and x3 
could be computed as

Third is the full diagonal case, which is functionally-equivalent to that of the column case, because a discretized 
diagonal will never involve paired nodes. Consequently, the r-register will again be comprised of one qubit per 
desired node in the average-pressure region, with one Pauli-X gate on each r-register qubit being swapped with 
an even node. Figure 11 summarizes the r-register generation procedures thus far.

We can extend these patterns to the more general case of arbitrarily-selected nodes in which to obtain the 
average pressure. We use the same patterns of applying a Hadamard gate on r-register qubits with paired node 
indices and a Pauli-X gate on r-register qubits with single, even-indexed nodes in the desired region. But now, 
obtaining average pressure in some sets of nodes will require more than one swap or Hadamard test. Specifically, 
in regions that contain both paired and single nodes, we will need two swap tests or two Hadamard tests: one 
test for paired nodes will result in a value with a coefficient of 1√

2
 , while the other test for single nodes will produce 

a value with a coefficient of one. We can then compute average pressure by multiplying the result of the test for 

(1)
|�r|x�|2 =

(

1
√
2
(x1 + x2)

)2

⇒ avg_pressure =
√
2
|�r|x�|

2
.

(2)
|�r|x�|2 = ((1)x1 + (1)x3)

2

⇒ avg_pressure =
|�r|x�|

2
.

Figure 11.  Schematic of the HHL and swap test circuits for extracting the average pressure from a full row, 
column, and diagonal of a discretized two-by-two region.
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paired nodes by 
√
2 to remove the coefficient, adding the resulting sum with the sum that results from the second 

test for single nodes, and dividing by the total number of nodes in the desired region.
To clarify, consider a slightly more complicated example where we have regions that are not automatically an 

entire row, column, or diagonal, as they were in the case of Fig. 10. Specifically, consider the 4× 4 discretized 
region in Subfigure a of Fig. 12, and suppose that the nodes circled in yellow represent nodes through which a 
two-pronged pitchfork fracture runs. Obtaining the average pressure in this fracture requires two circuits as 
illustrated in Subfigure b of Fig. 12. The first computes the sum of pressures in nodes that are single, while the 
second computes the sum of pressures in nodes that are pairs. Again, the difference between the circuit outputs 
is that paired nodes require multiplying by a known factor of 

√
2 to remove the 1√

2
 term resulting from the 

Hadamard gates in the r-register. After obtaining the sums, we can classically compute the average by dividing 
by the known number of nodes in the desired region.

Because building r-registers for arbitrarily-specified regions uses the same procedures as for building the 
registers for entire rows, columns, or diagonals, the general r-register complexity also aligns with the complexi-
ties of those situations. Specifically, the circuit for determining the average pressure of single nodes requires an 
r-register with one qubit per desired node and one Pauli-X gate per even-indexed node, while the circuit for 
determining the average pressure of paired nodes requires an r-register with one qubit per pair of nodes and 
one Hadamard gate per pair of nodes.

Overall complexities: qubit count, gate count, and additive error for average pressure 
extraction
The complexity in terms of qubit and gate count for the HHL algorithm is well-understood2,24,26, and is taken to 
be acceptable, if not for near-term machines, then for fault-tolerant or error-mitigated machines of the  future43. 
Therefore, to assess whether our information extraction approach is appropriately efficient, we assess its worst-
case complexity in terms of qubit and gate counts that are already required for the HHL portion of the circuit. 
We also comment on the relationship between the additive errors introduced during HHL and the information 
extraction portions of the computation.

First, qubit count: both the swap and Hadamard tests require only nr + 1 additional qubits, so we need to 
determine how nr scales with the size of the circuit required for HHL. Whether we have a region with all single 
nodes or all paired nodes, the maximum number of qubits in the r-register is nb . Furthermore, the total number 
of r-register qubits cannot be greater than nb even across two circuits for single and paired nodes, because if it 
were, at least one node would be double-counted in the resulting average. Therefore, nr is O(nb) , and the overall 
number of additional qubits for the swap/Hadamard test is O(nb)+ 1 = O(nb) . As nb qubits is considered reason-
able in the HHL algorithm, an additional O(nb) is a reasonable worst-case-scenario for information extraction.

Second, gate count; both the swap and Hadamard tests add a few additional gates (two for the swap test and 
four for the Hadamard test) in addition to the controlled-swap gates and the gates required to construct the 
r-register. Because there can be at most nb qubits in each r-register, there can be at most nb controlled-swap gates, 
meaning the worst-case-scenario for controlled-swap gates is O(nb) . Additionally, we found that the maximum 
number of gates required in the r-register is also O(nb) because at most one additional gate (either a Hadamard 
or a Pauli-X ) is required per qubit in the r-register. Consequently, the overall number of gates is O(nb) (either 

Figure 12.  Subfigure (a) is a 4× 4 discretized region with a pitchfork fracture marked by yellow circles. 
Subfigure (b) illustrates the two circuits needed to compute the average pressure in a series of arbitrarily-selected 
nodes, by building r-registers as described above.
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2+ O(nb)+ O(nb) or 4+ O(nb)+ O(nb) ), which is—by the same reasoning as above—considered efficient for 
purposes of HHL and therefore also for purposes of information extraction.

We note that a more interesting complexity issue is raised by the two circuits required to obtain average pres-
sure in a region with both single and paired nodes. This requires twice as many executions of the entire HHL 
procedure, which—particularly in the contemporary quantum hardware ecosystem—may add up to substantial 
runtime expense. Therefore, it is worth noting that we can avoid using two circuits to compute the average 
pressure in an arbitrary region, if we are willing to select only single nodes to represent our desired region. For 
example, consider again the fracture in Subfigure a of Fig. 12; if we removed nodes 10 and 12—or nodes 9 and 11 
or 10 and 11 or 9 and 12—then we could use a single circuit with the structure of Fig. 12’s Subfigure b to compute 
the average pressure in a region comprised of only single nodes. While this does not change the overall possible 
complexity of that circuit, it does reduce circuit executions to half of what would otherwise be required, at an 
‘accuracy cost’ of removing just a few nodes from our desired average pressure region.

Third and finally, error propagation. The HHL algorithm prepares a solution |x� with an additive error of ǫHHL , 
where ǫHHL is a user-defined parameter that will affect the QPE and inverse QPE  subroutines2,24. Therefore, upon 
completion of HHL, the b-register will be in a state with every element of |x� plus at most ǫHHL . (For simplicity, we 
assume that every element of the solution vector has the same error, which could be interpreted as the maximum 
of individual element errors, and which lends a state |x + ǫHHL� ). The swap and Hadamard tests both introduce 
a second additive error, ǫextract , such that the inner product measured has a value of at most ǫextract added to it.

Consider the structure of our r-registers, which weight the elements whose average we seek equally. This 
means that each node in the average will introduce an error of 1 ∗ ǫHHL , for a total of n ∗ ǫHHL , where n is the 
number of desired nodes in the average computation. Then, an error of ǫextract will be added to the entire inner 
product—including the n ∗ ǫHHL term—lending an overall error of n ∗ ǫHHL + ǫextract.

Because both additive errors are specified by the user and relate to the number of circuit executions required, 
the user can determine the amount of error in the average pressure by choosing a number of circuit executions 
they want to perform and using the complexities of HHL and the swap test ( O(log (N)κs2/ǫHHL) and O(1/ǫ2extract) , 
respectively) to ‘back out’ approximate values of ǫHHL and ǫextract . Then, the overall additive error in the average 
pressure solution is n ∗ ǫHHL + ǫextract , which is O(ǫ) , for ǫ = max {ǫHHL, ǫextract} . Assuming that ǫHHL and ǫextract 
are chosen to have similar magnitudes, our approach to efficient information extraction thus has an overall 
error that is the same order as the additive error of HHL itself, meaning our information extraction procedure 
is consistent with errors that are widely viewed as acceptable.

Conclusion
This work introduces efficient methods for both preparing the b-register for and extracting useful information 
from a quantum computer that solves a linear system representing a geologic fracture network problem. Both 
approaches have reasonable complexities, as they require O(nb) additional qubits and either O(Wnb) or O(nb) 
additional gates, where W is the number of injection/extraction wells. Furthermore, both approaches utilize only 
straightforward gate types that are applicable to near-term  hardware8, meaning they should be viable on improved 
hardware of the future. Consequently, this work—combined with the previous results in Refs.17  and19—provides 
answers to three of the four “fine print” considerations for using quantum algorithms to solve geologic fracture 
network problems.

Of course, these works do not close inquiry into the issue of solving geologic fracture network problems with 
quantum algorithms, and there are several avenues for further work. First, there are likely other solutions to state 
preparation and information extraction considerations, some of which may lend themselves more readily to 
quantum linear solvers that are more applicable than HHL for today’s NISQ-era devices. Second, empirical study 
of this work’s approaches—particularly in concert with the core of HHL itself—remains to be done, particularly 
given advances in quantum hardware offering larger and more error-resistant  machines34–36. Third and relat-
edly, error correction and/or mitigation techniques are likely required to make the core of HHL appropriate for 
geologic fracture network problems of any scale, making investigation of such techniques yet another avenue for 
further study. Nonetheless, this article and those it complements provide a foundational answer to the question of 
using quantum computing in the geologic fracture realm: it can be done and, especially with the rapid ascent of 
ever-improving quantum hardware, has the promise to revolutionize the modelling of geologic fracture networks.

Data availibility
The codes—which generate the considered data—are available at https:// github. com/ Orcha rdLANL/ DPFEHM. 
jl/ tree/ master/ examp les/ fract ure_ netwo rks_ for_ qc.
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