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Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the
heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models
are one methodology for predicting gas particle breakthrough times at the surface but are computationally
demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or
emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation
data with given statistical properties and, using a graph/path-based decomposition of the fracture network,
rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The
approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%-30% of high-
fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification,
outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our
trained model runs within a fraction of a second, considerably faster than reduced-order models yielding
comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than
high-fidelity simulations.

1. Introduction

Modeling and predicting the passage of fluids through subsurface
fracture networks is a fundamental and ongoing challenge in numerous
civil, governmental, and industrial applications. These include the long-
term storage of spent nuclear fuel, aquifer management and cleanup,
enhanced geothermal energy systems, conventional/unconventional
hydrocarbon extraction, geological sequestration of carbon, and the
detection of chemical signatures from clandestine nuclear weapons
tests (Selroos et al., 2002; Neuman, 2005; Follin et al., 2014; Sun and
Carrigan, 2014; Jenkins et al., 2015; Middleton et al., 2015; Hyman
et al., 2016b; Bourret et al., 2019; National Academies of Sciences,
Engineering, and Medicine et al., 2020). There are a variety of compu-
tational methods for modeling gas transport through such systems, and
specifically for obtaining the distributions of gas/solute travel times,
i.e., the breakthrough curve. One distinguishing feature between the
different modeling approaches is how, and with what level of fidelity,
fractures and the surrounding host rock are represented (Hyman et al.,
2022; Viswanathan et al., 2022).
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There are continuum methods where the effects of fractures are
accounted for using upscaled quantities, e.g., effective permeability and
porosity, cf. Sweeney et al. (2020) for additional references and a more
comprehensive description. However, continuum methods often poorly
represent network connectivity, which is believed to be a key geostruc-
tural property that controls transport through fractured media (Hyman
et al.,, 2020; Maillot et al., 2016). A result of upscaling the network
structure into effective properties is that it becomes challenging to link
transport observations with geostructural properties (Kang et al., 2020).
In contrast, there are discrete fracture network (DFN) models where
the individual fractures and the interconnected networks they form
are explicitly represented. While the higher level of fidelity provides
a more accurate representation of transport and the ability to link
geostructural attributes with flow and transport observations (Hyman
et al., 2019a,b), DFN simulations are more computationally expensive
than continuum models. DFN models typically require unstructured
computational mesh generation, have a large number of degrees of
freedom, and use a computational physics simulator, all of which scale
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with the spatio-temporal size of the simulations (Ushijima-Mwesigwa
et al., 2021). Regardless of the adopted computational methodology,
the large uncertainty inherent in subsurface modeling requires that
ensembles of realizations are generated to obtain expected transport
behavior along with confidence intervals of the breakthrough curves.
This requirement exacerbates the computational demands of subsurface
modeling and particularly DFN models.

A promising alternative to address these computational costs is
the use of machine learning (ML) techniques that take geostructural
information of the network, e.g., topological, geometric, and hydro-
logical attributes, as inputs to provide estimates of flow and transport
observations. Such surrogate models, or emulators, can be trained on a
modest amount of high-fidelity simulation data to provide approxima-
tions of gas/solute breakthrough times. While generating the training
data could still require many hours of simulation time for a given set
of hydrological properties, these ML models, once trained, can generate
predictions within a fraction of a second. Their predictions may not be
as accurate as those of the direct simulations themselves, but owing
to their speed, they allow for studying orders of magnitude more
fracture networks (with a given set of geostructural properties) than
would otherwise be possible using conventional computational physics
models. This scalability, in turn, can provide a more comprehensive
understanding of the underlying physical phenomena.

In our work, we aim to take advantage of ML-based accelera-
tion in the context of nuclear treaty monitoring where one needs to
predict gas migration quickly from underground nuclear explosions.
In the DFN methodology, this requires running numerous models to
obtain statistically stable estimates of a quantity of interest. Each DFN
is generated randomly from an ensemble, with statistical properties
representative of the geostructural attributes of the site under obser-
vation (Viswanathan et al.,, 2022). Given the computational cost of
high-fidelity simulations, the use of emulators allows an efficient means
of more fully exploring the space of network generation parameters
consistent with the system’s statistical properties. The emulator results
therefore interpolate between simulation results, filling gaps in the
parameter space that would be computationally unaffordable to fill
using additional high-fidelity simulations.

There is an extensive body of literature on the use of emulators,
also known as meta-models, for subsurface flow simulations. Thenon
et al. (2016) study the use of multi-fidelity meta-models for reser-
voir engineering. Zhou et al. (2020) propose using deep learning for
predicting THM (coupled thermo-hydro-mechanical) gas flow. Other
researchers develop neural network emulators as surrogates for high-
fidelity reactive transport models, for groundwater modeling (Thiros
et al.,, 2022), and for carbonate reservoirs (Li et al., 2022). Focac-
cia et al. (2021) use Polynomial Chaos Expansion in order to ap-
proximate long-term forecasting in groundwater applications. These
approaches focus on saturated flows. We are interested in diagnostic
gas flow through subsurface fractured rock, where THMC (coupled
thermo-hydro-mechanical-chemical processes) play an important role.
These systems are heterogeneous, complex fracture networks, amenable
to DFN modeling. Our contribution is the development of ML-based
emulator models in the DFN setting.

While ML approaches have been used previously in this context,
to identify primary flow subnetworks (Valera et al., 2018; Srinivasan
et al., 2019, 2020), they have not been used to generate direct pre-
dictions of particle arrival times themselves. Furthermore, these tech-
niques do not provide predictive uncertainties. Our work addresses
both shortcomings. We use Gaussian Process Regression (GPR, also
known as kriging) to obtain predictions for transport breakthrough
times through fracture networks along with uncertainty quantification.
Our method blends physics-based modeling with Bayesian inference to
generate predictions with greater interpretability.

Specifically, we train our model on breakthrough curves (travel time
distributions of particles transported along with the flow) generated us-
ing high-fidelity three-dimensional DFN simulations. These simulations
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are drawn from an ensemble of semi-generic DFNs based on commonly
observed field site characteristics including hydrological properties.
We characterize the networks using a graph representation to isolate
features associated with simple source-to-target paths in the graph
which are used as ML model inputs. The quantities of interest (Qol)
predicted by the model, on other DFNs sharing the same hydrological
properties, are quantiles of the breakthrough time distribution: notably
the Oth (first arrival time), 20th, 50th, 70th, and 90th percentile, as
well as the peak arrival time.

GPR, as a Bayesian method, outputs a full predictive distribution
rather than simply a scalar prediction. Given a prior distribution of a
Gaussian process, GPR uses the training data to update this prior and
to generate a multivariate normal posterior distribution. GPR allows
nonlinear fits with closed-form predictive uncertainties for the outputs.
This helps address the crucial challenge in subsurface hydrology of
quantifying the uncertainty in breakthrough curve predictions.

Our results are summarized as follows. On DFNs with several hun-
dred fractures, our model trains within seconds and the trained model
runs within a fraction of a second which is multiple orders of mag-
nitude faster than the original simulation. We obtain predictions on
breakthrough times that, depending on the quantile, are within 20%-—
30% of the values obtained from high-fidelity simulations. This is a
high level of accuracy given the sparsity of experimental data on true
subsurface fracture sites and the fact that DFNs themselves provide
at best a statistical characterization of such data. Furthermore, our
prediction quality is competitive with existing reduced-order models for
breakthrough time prediction (Viswanathan et al., 2022), in particular
an adaptation of a graph flow model (Karra et al., 2018) which obtains
similar accuracy but takes approximately one minute (compared to
a fraction of a second) to run due to the need to simulate particle
flow. Finally, we obtain rigorous confidence bounds for our predictions.
These results can impact numerous application areas, including gas
seepage from underground nuclear explosions, natural gas extraction,
and detection of methane leakage from wells.

2. Methods: Flow and transport in fracture networks
2.1. Three-dimensional discrete fracture networks

For the high-fidelity simulations used to generate our training data
set, we adopt a Discrete Fracture Network (DFN) approach to model
flow and transport through the fractured rock mass. In a DFN model,
the fractures are represented as a network of intersecting planes whose
sizes, shapes, orientations, and hydrological properties are sampled
from distributions whose parameters are determined from a site charac-
terization, cf. Viswanathan et al. (2022) for a comprehensive discussion
of DFN modeling approaches. We use the prnWorks software (Hyman
et al., 2015a) which provides an end-to-end workflow from network
generation to flow and transport simulation. We consider an ensemble
of semi-generic DFNs generated in a cubic domain with sides of length
L =100 m. The networks are semi-generic in that they do not represent
a particular field site, but the characteristics are loosely based on field
observations (Bonnet et al., 2001). Within the DFN, there is one fracture
family, with radii » drawn from a truncated power law distribution
with a decay exponent of 1.5, and lower and upper cutoffs of 1
and 50 m. Fracture centers are uniformly distributed throughout the
domain and their orientations follow a uniform distribution projected
onto the unit sphere, which mimics a disordered media (Hyman and
Jiménez-Martinez, 2017). These parameters ensure that there is no sin-
gle fracture connecting inflow and outflow boundaries. Initially, 2000
fractures are placed in the domain. Isolated fractures and clusters that
do not connect the inflow and outflow boundaries are removed because
they do not contribute to flow. The resulting fracture networks contain
around 300 fractures each. The hydraulic aperture of each fracture is
positively correlated with the radius using a power-law relationship,
b =5-10754/r. Such correlations are a common modeling assumption
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for a DFN model (de Dreuzy et al., 2002; Frampton and Cvetkovic,
2010; Hyman et al., 2016a; Joyce et al., 2014). This correlation leads
to hydraulic variability as well as the geostructural variability of the
network.

Next, we create a computational mesh representation of networks
on which to simulate flow and transport. The mesh is a conforming
Delaunay triangulation produced using the Feature Rejection algorithm
for meshing (FRAM) combined with the near-maximal Poisson sam-
pling method (nMAPS), which are described in Hyman et al. (2014)
and Krotz et al. (2022). We simulate steady-state laminar flow on the
dual mesh of the triangulation, the Voronoi control volumes, using the
massively parallel flow and transport solver prrotran (Lichtner et al.,
2020). The distribution of volumetric flow rates and pressure within
the network is modeled using Darcy’s Law

q=-2vp o)
U
where q is the volumetric flux with explicit units of [m3/(m? s)], «
is the permeability [m?], u is the fluid viscosity [Pa s], P is the fluid
pressure [Pa], and VP is the pressure gradient [Pa/m]. Simulations are
performed with the fluid temperature at 20 °C, which corresponds to
a viscosity of y = 8.9 - 10~* Pa s for the pressure values considered.
Fracture permeability is determined using a local cubic law, x = b*/12.
We drive flow through the domain by applying a pressure difference
of 1 MPa across the x-axis using Dirichlet conditions on the inflow and
outflow boundaries. Note that Eq. (1) is linear in the pressure gradient,
and thus the value of 1 MPa is arbitrary with respect to the structure
of the flow field within the network. Neumann, no-flow, boundary
conditions are applied along lateral boundaries of the domain as well as
along fracture boundaries. Gravity is not included in these simulations.
In the DFN model, the matrix surrounding the fractures is impermeable,
i.e., there is no interaction between flow within the fractures and the
solid matrix. The numerical solution of Eq. (1) provides values for the
pressure and volumetric flow rates throughout the domain that are used
to reconstruct the Eulerian velocity field u(x) within the DFN using the
method provided in Makedonska et al. (2015) and Painter et al. (2012).

Transport through the network is simulated using tracer particles
that follow pathlines through the velocity field u(x). Particles are
distributed along the inflow plane of the domain using flux-weighting
so that the number of particles at a location is proportional to the
incoming volumetric flow rate (Hyman et al., 2015b; Hyman and Dentz,
2021; Kang et al., 2017; Kreft and Zuber, 1978). The trajectory x(z; a)
of a particle starting at a point a at time ¢ = 0 is given by integrating
the advection equation
% =v,(t;a),
Here, the Lagrangian velocity v,(r;a) is given in terms of the Eulerian
velocity u(x) as v,(t;a) = u[x(t;a)]. The dynamics occurring within
intersections are a sub-grid scale process represented using a complete
mixing model so that the probability of a particle exiting onto a fracture
is proportional to the outgoing volumetric flow rate. The numerical
method implemented is described in Sherman et al. (2019).

We record the arrival time of each particle to exit the domain
having traveled a linear distance of x;, which we denote as 7(x,;a).
These values are used to construct the relative solute breakthrough
(probability density function) at a time ¢ defined as

x(0;a) = a. (2)

wit,x,) = % /Q ,, da 8[r(x,,a) 1], 3

where §(¢) is the Dirac delta function. We also compute the cumulative
solute breakthrough (cumulative density function) as

W(t,x;) = %/ da H[z(x;,a)—1], “

where H(t) is the Heaviside step function. In Egs. (3) and (4), M is
the total number of particles tracked through the domain, which is set
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Fig. 1. DFN with planes representing fractures, overlaid with its associated intersection
graph. The blue vertex on the left denotes the source (inlet) and the red vertex on the
right denotes the target (outlet).

to ten thousand in these simulations. A preliminary study showed that
these primary observables were not dramatically affected by increasing
the number of particles beyond this value. A single run using 32 cores
takes around ~1-2 h depending in the number of fractures in the
network.

2.2. Graph representation

At the center of the DFN methodology is the conceptual model that
a set of fractures, which are discrete entities, intersect one another
to form a network. This conceptual model may also be represented
using the mathematical construct of a graph G = (V, E), which is a
tuple consisting of a vertex set V and an edge set E containing pairs
of vertices connected by an edge. There are a variety of graph-based
representations of a DFN. There is the canonical representation where
vertices are fractures and edges are intersections (Andresen et al., 2013;
Hope et al., 2015; Huseby et al., 1997; Hyman et al., 2017), which can
be readily populated with particle information to create a flow topology
graph (Aldrich et al.,, 2017) as well as a bipartite graph with one
vertex set of fractures and another vertex set of intersections (Hyman
et al., 2018). We adopt a representation where nodes correspond to
intersections between fractures V/, and two vertices are connected by
an edge in F if the associated intersections are on the same fracture.
We refer to this as the intersection graph representation. The precise
mathematical formalization and relationship with other representations
are presented in Hyman et al. (2018). Fig. 1 shows a small DFN,
not one used in the simulations, along with the intersection graph
representation as an exposition. Additional source and target vertices
are added to represent an inlet plane and an outlet plane, thereby
providing an orientation of the graph in topological space. Since a
fracture can have multiple intersections, it may be represented not only
by a single edge but by a clique (fully connected subgraph) whose edges
represent all pairs of intersections. Additionally, flow and transport can
be resolved on the graph representations using the same governing
equations provided above (Dershowitz and Fidelibus, 1999), cf. the
graph flow models of Karra et al. (2018) and Doolaeghe et al. (2020) for
examples. For this reason, the intersection graph has been called a pipe
or channel network representation of a fracture network (Dershowitz
and Fidelibus, 1999). In turn, approximations of volumetric flux and
travel times on edges within the graph can be readily obtained.
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3. Gaussian process regression

Consider a collection of N DFN simulations. For the ith sample,
let G; be its intersection graph representation as defined above, y;
be its high-fidelity QoI (appropriate quantile of breakthrough time
distribution), and x; be features extracted from the graph G;. Our
objective is to learn a surrogate model y; = f(x;) which allows for ac-
curate and fast prediction of high-fidelity breakthrough times, directly
as a function of the low-fidelity graph embedding, without resorting
to expensive transport simulations. A commonly used class of surro-
gate models for computer simulators is Gaussian Process Regression
(GPR), a flexible nonparametric regression model. GPR is well-suited
for this application for various reasons: (i) it allows nonlinear fits
of varying degrees of smoothness; (ii) minimal assumptions a priori
are required about the nonlinear functional form; (iii) predictions are
equipped with closed-form, rigorous confidence bounds, allowing for
uncertainty quantification; (iv) using modest amounts of training data,
it can be trained and used for prediction with reasonable computational
speed. Other regression methods, such as Bayesian linear regression
and support vector machines, tend to pre-specify the functional form,
require stronger assumptions, or necessitate approximate methods for
uncertainty quantification (Bishop, 2006).

A Gaussian process, denoted f(x) ~ GP (y(x), Z(x, x' )) with mean
function u(x) and covariance function X(x,x’), is a distribution over
functions such that any finite set of function evaluations at points
x = (xy,...,x,) is multivariate normal (Rasmussen and Williams, 2006):

Sf(x) ~ N (u(x), Z(x, x)). ()

It is common to set u(x) = 0 a priori, thus focusing model specifica-
tion on the covariance function X(x,x’). This governs the smoothness
of f(x), as it characterizes the correlation between two outputs as a
function of the similarity between their corresponding inputs. In GPR,
X is typically specified by a kernel K(x,x’) belonging to a chosen
family. A common choice is a radial basis function (RBF) kernel,

K(x,x') = exp (—#nx—x’w) : ®)

which is infinitely differentiable, thus producing smooth functions
f(x). Other families, like the Matérn class of kernels, can produce less
smooth fits, rendering them potentially suitable for hydrogeological
simulations. However, as we note in Section 5 below, we did not find
any major differences between the results from GPR models fit using
RBF and Matérn kernels.

For model inputs which are not deterministically related to outputs,
it is common to add an additional white noise term with variance o-Z.
The full covariance matrix evaluated at points x is given by: X(x,x) =
K(x,x)+ aZ_I,,. Its hyperparameters can be estimated (Rasmussen and
Williams, 2006) by numerically maximizing the log marginal likelihood
of the observed data,

max log p(y|x, 7, 6,) = max (—% [¥" 27" (x, )y + log (det X(x, x)) + nlog 2z ) .
7.0¢ 7,00
@

A benefit of GPR is that its predictive distribution is normal. That
is, for any arbitrary input x*, its predicted surrogate output f(x*) ~
N (u(x*),62(x*)) where:

u(x*) = 2,5, 027 (x, %)y, ®)
G2(") = Z,, (¢, %) = 2,027 06, %) [2,5, )] ©)

for Z,(x*,x) = [K(x,.x)),....K(x,,x,)| and Z,,(x*,x*) = K(x,,x,).
This enables fast prediction once the GPR is trained (making it a de-
sirable candidate for surrogates of expensive computer models), while
also facilitating estimates of predictive uncertainty.
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4. Data

In this section, we describe our Qol data and the features that we
construct as inputs to GPR. We train and test the model using a dataset
G, which contains 100 DFNs. For each one of the graphs G € G, a
breakthrough curve has been generated using the 3D DFN model. In
addition to G,, we have a second dataset G, of 100 DFNs, generated
using the same statistical generation properties. We use this second set
only for feature tuning.

4.1. DFN - Breakthrough curves

Using brnWORKS, we generate a statistical ensemble of random DFNs,
all with the same hydrological properties, for each of the two datasets
and obtain cumulative particle breakthrough densities (Eq. (4)). We
record quantiles that span much of the breakthrough time distribution,
notably 0% (first arrival time), 20%, 50%, 70%, and 90%, as well as
the peak arrival time. These form the target quantities of interest (Qol)
for our ML model predictions.

GPR functions most effectively when applied to data with a Gaus-
sian distribution. Fig. 2 demonstrates that the Qol is heavily skewed
with a median breakthrough time (BTT) displaying a distribution that
is closer to log-normal than to normal. We therefore take the log of this
quantity, whose distribution is closer to normal (apart from an extended
right-hand tail). We use the log of the BTT quantiles as the output of
our model for training and prediction purposes.

4.2. Model input

Many methods have been developed to extract features from graphs
for machine learning (Stamile et al., 2021). They can be grouped into
a number of categories such as shallow embedding methods, regu-
larization methods, and graph neural networks (Chami et al., 2021).
As an alternative, we adopt the physics-informed approach presented
by Srinivasan et al. (2020): in order to extract features that describe the
flow through the graph, we consider features associated with physical
information on topological paths within the graph that connect the
source to the target node. This approach is well-suited to characterizing
particle breakthrough times as it captures attributes that most influence
transport across the network.

To form an input data point x; to our surrogate GPR model f(x) in
a given DFN, we take a collection of source-to-target paths along with
the set of features associated with each path. Given k possible paths
and / features for each path, we sum the value of each feature over all
k paths, resulting in a model input x; € R’. Following Srinivasan et al.
(2020), we identify the k source-to-target simple paths that are shortest
in terms of graph distance on the intersection graph. However, rather
than taking a fixed value of k as in previous work, we leave it as a
tunable quantity in our feature selection (see Section 4.3 below).

We fix | = 5 and select the five path-associated features that are
described below and illustrated schematically in Fig. 3. While better
features may well exist, these demonstrate how, empirically, a small
number of interpretable physical quantities can describe network flow
well enough to yield useful predictions. Our choice of features is moti-
vated primarily by quantities used in the graph flow model presented
by Karra et al. (2018), as mentioned in Section 2.2 above. They differ
from the graph centrality-based features that were found to be most
impactful in the identification of primary flow subnetworks (Valera
et al., 2018; Srinivasan et al., 2019, 2020) but did not perform as well
for the direct prediction of breakthrough times, as we have confirmed
through a forward-selection process.

4.2.1. Path length

Path length is the number of distinct fractures involved in the path
from the source to target node in the network. In the intersection graph
representation, this is the number of edges along the path. For the two
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Fig. 3. Schematic representation of input features for GPR, defined on source-to-target paths in the intersection graph (two paths shown, in purple above and in yellow below)

or on edges (fractures) along the path.

paths highlighted in Fig. 3, the path lengths are 5 (upper path in purple)
and 4 (lower path in yellow).

4.2.2. Inverse permeability: r;;

The permeability «;; of the fracture connecting intersections i and
j is a measure of conductance, represented schematically in Fig. 3 by
edge width. The inverse of conductance is a measure of resistance. In
a resistive network, the resistance of two components in series is the
sum of the resistances of the two components. By analogy with this,
we consider the inverse permeability of a fracture,

. 10)
Kij

to be a quantity whose sum over a sequential path of fractures has

physical significance. We take the value of the inverse permeability

feature on a path to be the sum of r;; among all edges (fractures) on

that path.

Note that the closely related arithmetic mean of the inverse perme-
abilities is equal to the reciprocal of the harmonic mean of permeabil-
ities along the path. The latter quantity is the equivalent permeability
for transporting, across the entire path, the same flux under the same
pressure gradient.

ij

4.2.3. Fracture length: L;;

Fracture length is the Euclidean distance L;; between the centroids
of intersections i and j, representing the distance that a particle travels
on the fracture {i,j}. This is illustrated in Fig. 3 by the length of an

edge between two vertices. We take the value of the fracture length
feature on a path to be the sum of L;; among all edges (fractures) on
that path, representing the shortest distance a particle can travel on it
from source to target.

4.2.4. Volumetric flux: q;;
From Darcy’s Law (Eq. (1)), the volumetric flux on an edge is
Kij

MLij

qij = (P, = P, an
where 4 is the fluid viscosity and P, P; are pressures at nodes i and
Jj, calculated using the method described in Karra et al. (2018). This
is a measure of particle flow along the edge, represented schematically
in Fig. 3 by a double arrow. We take the value of the volumetric flux
feature on a path to be the median of ¢;; among all edges (fractures)
on that path. The median is chosen to minimize sensitivity to outlier
values along the path; through forward feature selection, we found that
it outperformed the use of mean, sum, minimum, and maximum over
the path.

4.2.5. Travel time: t;;
Edge travel time is denoted as

Lijdi;
4ij '

t =

12)

where ¢,;; is the porosity of the fracture {i,j} taken to be 1 here
indicating a completely open fracture. This is a measure of the time for
a particle to travel along an edge, illustrated schematically in Fig. 3 by a
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Fig. 4. Mean absolute percent error (MAPE) of predicted median BTT, over the 100 DFNs in the feature tuning dataset G,, when k shortest source-to-target paths are used in

feature construction.

clock and dashed arrow. We take the travel time feature on a path to be
the median of ¢, ; among all edges (fractures) on that path. While travel
time along an edge is clearly not independent of fracture length and
volumetric flux, the use of median distinguishes it qualitatively from
the fracture length feature above which instead involves a sum. Here,
as with the volumetric flux feature, the choice of median was further
validated by forward feature selection.

4.3. Feature tuning

While our GPR model does not require any hyperparameter tuning,
there is one tunable quantity in our feature construction: the number of
shortest source-to-target paths, k. We find the value of k that optimizes
model prediction quality by evaluating the absolute percent error of
the predicted median BTT on the 100 DFNs in our second dataset,
G € G,, using 10-fold cross-validation. Implementation details for our
GPR predictions are described in the Results section below. In order
to avoid data leakage, we use G, only for tuning k and not for any
subsequent training or testing.

Fig. 4 shows the mean absolute percent error (MAPE), over these
100 DFNs, of the predicted median BTT. We find that, as a function
of k, the MAPE has relatively smooth behavior, with values reaching
a minimum at smaller k values as more paths are considered. As k
increases further, the inclusion of paths less relevant to particle flow
appears to dilute the features, causing MAPE to increase and ultimately
stabilize at large k. While the variations are not large (within 2%), we
use the numerical minimum k = 12 as our optimized value.

Note that, while we optimize k on the basis of the median BTT
alone, we use this same tuned value of k = 12 in the input features
for predicting all of our Qol. It may seem that allowing additional
source-to-target paths (larger k) could improve performance for larger
quantiles of the breakthrough curve such as the 70th and 90th per-
centile, and that the reverse could hold for smaller quantiles such as
the Oth and 20th percentiles. Empirically, however, we have not found
that this gives consistently better predictive performance.

5. Results

We implement Gaussian Process Regression (GPR) using the Python
scikit-learn function GaussianProcessRegressor. We choose an
RBF plus white noise kernel, as described in Section 3, and set all other
parameters to default values. In order to test whether our results are
sensitive to the choice of kernel, we also implement a Matérn kernel
with parameter v = 3/2 (also with white noise), which is far less smooth
than RBF. As will be seen in Tables 1 and 3, this does not appear to have
an important or systematic effect on model output. Where not explicitly
noted, results given below use the RBF kernel.

Table 1

Mean Absolute Percent Error (MAPE) of model predictions for different BTT quantiles
and peak BTT, over the 100 DFNs in the dataset G, using 10-fold cross-validation.
Oth percentile represents first arrival time of gas particles. For completeness, results
are shown with GPR predictions using both the RBF kernel and the Matérn kernel,
although neither one offers a clear improvement over the other.

BTT percentile MAPE (RBF) MAPE (Matérn)
Oth 20.53% 19.34%
20th 22.53% 21.02%
50th (median) 21.80% 21.75%
70th 23.29% 24.65%
90th 30.24% 31.43%
Peak 26.93% 26.71%

5.1. Model predictions

We train and test the GPR model on the 100 DFNs in the first dataset
G, using 10-fold cross-validation. Recall that our Qol are quantiles of
these breakthrough curves, including the Oth (first arrival time), 20th,
50th, 70th, and 90th percentile, as well as the peak arrival time. Fig. 5
shows the percent errors of the model predictions of the 50th percentile
(median BTT) over this dataset. Inputs to GPR are standardized, result-
ing in a symmetric distribution (left) of percent errors in the logarithmic
quantity that the model outputs. This distribution becomes asymmetric
(right) when exponentiating the model output to recover one of our
Qol, the raw median BTT. The model predicts this quantity with an
error between —47% and 77%. Fig. 6 shows the corresponding absolute
percent error in the predicted median BTT. For a majority of DFNs, the
error is less than 20%, exceeding 50% in only 8 out of 100 cases.

Table 1 expands our comparisons to the other BTT quantiles and
peak BTT, showing the mean absolute percent error (MAPE) of model
predictions. Values range from approximately 20% (for Oth percentile
or first arrival time) to 30% (for 90th percentile). For completeness,
here we give results using both the RBF and Matérn kernels in GPR,
although there are no major differences between them. These numerical
results are broadly comparable to the most accurate BTT predictions ob-
tained from reduced-order models (Viswanathan et al., 2022), namely
using the graph flow model of Karra et al. (2018) mentioned in Sec-
tion 2.2. By applying a bias-correcting postprocessing step based on
simple linear regression to that method, using the same training data
and 10-fold cross-validation approach as for GPR, we obtain an MAPE
of 19.77% for median BTT, compared to 21.80% from our GPR model.
However, once trained, GPR runs in a fraction of a second rather than
the ~1 min required for simulating transport in the graph flow model.

To put these run times in context, recall that any given DFN is
simply a random realization of an ensemble of fracture networks with
a given set of hydrological properties. Owing to statistical variations,
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Table 2

Approximate run times and MAPE for median BTT predictions on 10* DFNs using high-fidelity simulations (Hyman et al., 2015a), bias-corrected
graph flow (Karra et al., 2018), and GPR. MAPE is with respect to high-fidelity simulations. For graph flow bias correction and for GPR, we
account for the time of generating a training set of 100 DFN high-fidelity simulations.

Method Total run time MAPE
High-fidelity 5% 107 s -
Graph flow 5% 10° s (training) + 6 x 10° s (model runs) 19.77%
GPR 5% 10° s (training) + 4.6 x 10> s (model runs) 21.80%

exploring the space of network generation parameters consistent with
these properties can require running a large number of DFN models.
On such sample sizes, the difference in timings among the different
methods can be considerable, even with the large amount of time
required to simulate training data for ML models. Table 2 shows a
comparison of the approximate CPU time needed to generate BTT
predictions on 10* DFNs using high-fidelity simulations, the graph flow
model, and the GPR model, along with their associated MAPE. The
run times are based on 5 x 10° s (about 1.5 h) to run a high-fidelity
simulation, 6x 10" s (1 min) to run the graph flow model, and 4.6x 10~2
s to run the GPR model, on a single processor with 32 cores. The run
times further assume that both graph flow bias correction and GPR use
a training set of 100 high-fidelity simulations. For such sizes, the time
to train these two models is overwhelmed by the time to generate the
training data, even though the training complexity of GPR scales as
O(N?) for N training points (Rasmussen and Williams, 2006). As shown
in Table 2, after accounting for the large data generation overhead,
GPR still remains approximately two orders of magnitude faster than
high-fidelity simulations and is twice as fast as graph flow.

Finally, we note that expanding the size of our training set to more
than 100 DFNs does not noticeably improve prediction quality. For
instance, increasing the training sample to 200 DFNs results in only
a very modest decrease in the MAPE for median BTT, from 21.80%
to 21.64%. Conversely, when the size of the training set is decreased,
performance does degrade. Switching from a 10-fold cross-validation
framework to 4-fold cross-validation, which decreases the number of
training DFNs used in a fold from 90 to 75, increases the MAPE for
median BTT from 21.80% to 22.59%. These observations suggest that
prediction quality saturates at approximately the training sample size
that we use for the results above, and that our specific choice of features
may be a more important limitation than the quantity of training data
available.

5.2. Uncertainty quantification
A further advantage of the GPR model is that it outputs not only a

value but a predictive distribution which provides rigorous confidence
bounds on predictions. In order to illustrate the effectiveness of the
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Fig. 7. Results from simplified GPR model trained only on 1 feature (path length), along with 95% confidence bounds, training data points, test data points, and 5-feature
predictions (with full GPR model) on test data points. Gray circles show 90 DFNs from dataset G, used to train GPR model. Orange solid line shows 1-feature predictions varying
smoothly with model input (path length). Orange dashed lines show associated 95% confidence bounds. Blue squares show 10 DFNs from dataset G, used to test GPR model.
Orange points show 5-feature predictions on test DFNs, along with bars showing 95% confidence bounds for those predictions.

method on our problem, we first show the results on a simplified
version of it. Fig. 7 displays predictions for the log of the median BTT
when the model is trained using data described by only one feature, the
path length. This allows us to represent, on a 2D plot, a smooth curve
showing the model output as that one feature is varied, along with
the predictive interval delimited by 95% confidence bounds (dashed
lines). In this example, the training data consist of 90 fixed DFNs from
dataset G;, denoted by gray circles, and the test data consist of the
remaining 10 DFNs, denoted by blue squares. Finally, orange points
represent predictions given on the test data by the full 5-feature model,
with error bar whiskers representing 95% confidence bounds for those
predictions.

A few properties are notable in the results in Fig. 7. Qualitatively,
the predictive interval widens as expected at large path lengths, where
training data is sparser and the model is less confident in its predictions.
Quantitatively, the model correctly learns confidence intervals from
the training data, with approximately 95% of those data points (gray)
contained within the 95% confidence bounds for the 1-feature predic-
tion. This effect is validated on test data, again with approximately
95% of those data points (blue) contained within the 95% confidence
bounds for the 5-feature prediction. Not surprisingly, these confidence
bounds are considerably tighter than those for the 1-feature prediction,
demonstrating the decrease in uncertainty from including the four
additional features.

Table 3 summarizes uncertainty quantification results for all of our
Qol. At a given quantile, and for each DFN, we consider the log BTT
predicted by the model along with its associated 95% confidence inter-
val. We express the width of this confidence interval as a percentage of
the log BTT and average that quantity over all 100 DFNs in the dataset
G,. This relative confidence interval width varies from 12.30% of the
predicted log BTT (for 50th percentile, i.e., median) to 15.43% of the
predicted log BTT (for peak breakthrough). Note, though, that relative
confidence intervals widths are considerably larger (and asymmetric)
when expressed as a percentage of the raw BTT, as one might expect
given the MAPE values of 20% to 30%.

Table 3 also shows the confidence interval coverage: the fraction
of actual values that are within the 95% confidence bounds of the

Table 3

% Width of CI represents relative width of predicted confidence interval, expressed
as percentage of predicted log BTT, and averaged over the 100 DFNs in the dataset
G, using 10-fold cross-validation. CI coverage is the fraction of actual values that are
within the 95% confidence bounds of the prediction. Results are shown for different
BTT quantiles and peak BTT. For completeness, we show CI coverage values not only
from the RBF kernel but also from the Matérn kernel, although there are no major
differences between those values.

% Width of CI

BTT percentile CI coverage (RBF) CI coverage (Matérn)

Oth 12.76% 0.92 0.91
20th 12.93% 0.97 0.95
50th (median) 12.30% 0.93 0.93
70th 13.11% 0.95 0.91
90th 14.84% 0.93 0.95
Peak 15.43% 0.96 0.95

prediction. We show these values for results from both the RBF and
Matérn kernel. They are all close to 0.95, consistent with the model
correctly learning confidence intervals over all quantiles.

6. Discussion and conclusions

Predicting gas breakthrough times in fracture networks is a crucial
scientific challenge for which high-fidelity DFN simulation methods
are computationally expensive. In this paper, we have introduced a
Bayesian machine learning approach that uses Gaussian Process Re-
gression (GPR) as an emulator for these simulations, providing rapid
predictions of quantiles of the breakthrough time distribution along
with confidence intervals that are consistent with the simulation data.
Our model is trained on a modest amount of high-fidelity simulation
data, using a combination of topological and geological attributes
of the DFNs as features. The ensemble we consider is composed of
synthetic semi-generic DFNs. They are semi-generic in that they do
not represent a particular field site, but the characteristics are loosely
based on field observations. Likewise, the Dirichlet pressure boundary
conditions are common in the field. Thus, the results here are rather
general in the sense that the methodology is not limited to a specific
site (Viswanathan et al., 2022).
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Once trained on simulations representing a given set of statisti-
cal (hydrological/structural) properties, our method generates results
within a fraction of a second for different DFNs with those proper-
ties. Even considering the significant time needed to generate training
data, this method can be an attractive choice for modeling subsurface
systems where uncertainties in hydrological properties require a large-
scale ensemble approach. Our results show that the model’s predictions
are within 20%-30% of those from high-fidelity simulations. This is
competitive in terms of accuracy with existing reduced-order models
for breakthrough time prediction, which run many times slower than
our model, and is of sufficient quality to impact application areas
ranging from extraction of hydrocarbons to detection of underground
nuclear explosions (Viswanathan et al., 2022). Moreover, our Bayesian
approach provides rigorous uncertainty quantification, offering ana-
lytically tractable confidence bounds. These are invaluable given the
modeling uncertainties in subsurface hydrology and are essential to
interpreting model predictions.

It is important to note certain limitations of our approach. First
of all, we would expect a trained model to perform well only on
DFNs generated with the same overall statistical properties as those
it is trained on. If those properties change, the model would need to
be retrained. However, if the changes are not too large, it may be
possible to implement a separate “discrepancy” model that corrects BTT
predictions according to DFN generation parameters, analogous to the
bias correction that we learn for the graph flow model. This discrepancy
model could be an independent GPR that is stacked on top of our
BTT prediction model, essentially correcting the original predictions to
reflect the change in DFN properties.

An additional limitation of our approach is that the raw accuracy
of our GPR model remains slightly inferior to that of the corrected
graph flow model. It is possible that some improvements to our input
features could result in improvements in prediction accuracy. For both
the volumetric flux and travel time, instead of using the median value
along a path, we can set a different quantile as a tunable quantity in our
feature construction. Currently, our only such tunable quantity is k, the
number of shortest source-to-target paths used in feature construction.
In principle, there is no difficulty in optimizing multiple quantities in
feature selection, using a grid search, over the same separate dataset
G, that we now use to tune k alone. One might also consider the
reverse approach of eliminating the volumetric flux and travel time
features altogether, sacrificing accuracy for speed, as the calculation of
pressures (required for volumetric flux and travel time) dominates both
the training and the prediction time in our current model. For networks
of several hundred fractures, eliminating that bottleneck could speed
up the process by several orders of magnitude. The results in Fig. 7,
obtained from running GPR with only the path length feature, suggest
that such an approach may be viable. A further possible improvement
concerns our choice of kernel function for GPR. While using a Matérn
kernel with a smoothness parameter of v = 3/2 (a standard choice) has
not led to noticeably different results, one can also learn an optimal
value of the parameter from the data as well as adopt an isotropic
kernel that attributes different sensitivities to different features. These
could lead to improved predictions.

Finally, work is currently underway on generalizing our GPR
method to a multi-fidelity setting, analogous to the co-kriging meta-
modeling approach that has been proposed by Thenon et al. (2016)
for the case of reservoir engineering. We have seen that graph-based
algorithms can be used to supply low-fidelity BTT predictions. While
such methods are slower than GPR, they are orders of magnitude
faster than high-fidelity DFN simulations and could therefore serve as
a source of less expensive (and consequently more abundant) training
data. Preliminary results suggest that, with a multi-fidelity approach
based on either an autoregressive training scheme or a linear Gaussian
network, one can obtain results of comparable quality to those in this

Computers and Geosciences 192 (2024) 105700

paper while using far less high-fidelity training data. This research is
ongoing.
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