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Abstract
Politically divided societies are also often divided emotionally: people like and trust those with similar political views (in-group favoritism) 
while disliking and distrusting those with different views (out-group animosity). This phenomenon, called affective polarization, 
influences individual decisions, including seemingly apolitical choices such as whether to wear a mask or what car to buy. We present 
a dynamical model of decision-making in an affectively polarized society, identifying three potential global outcomes separated by a 
sharp boundary in the parameter space: consensus, partisan polarization, and nonpartisan polarization. Analysis reveals that larger 
out-group animosity compared to in-group favoritism, i.e. more hate than love, is sufficient for polarization, while larger in-group 
favoritism compared to out-group animosity, i.e. more love than hate, is necessary for consensus. We also show that, counterintuitively, 
increasing cross-party connections facilitates polarization, and that by emphasizing partisan differences, mass media creates self- 
fulfilling prophecies that lead to polarization. Affective polarization also creates tipping points in the opinion landscape where one 
group suddenly reverses their trends. Our findings aid in understanding and addressing the cascading effects of affective polarization, 
offering insights for strategies to mitigate polarization.
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Significance Statement

The escalation of partisan divide threatens social cohesion and effective governance. This article presents a mathematical model 
showing how affective polarization—emotional animosity to the opposing party and affection towards one’s own party—can tran
scend ideology, driving rapid transitions between consensus, polarization, and fragmentation in collective choices. The model ex
plains how out-group hate is a potent driver of division, while in-group love is less strong as a unifier, highlighting the challenges 
of finding compromise in a divided society. Counterintuitively, forcefully breaking echo chambers in societies with high animosity 
fuels polarization rather than deterring it. The analytically tractable model reconciles seemingly contradictory findings in the litera
ture and provides a theoretical foundation to study and mitigate harmful polarization dynamics.
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Introduction
American society has grown more ideologically divided, with 
Democrats and Republicans not only disagreeing on policy issues 
but also making dramatically different choices about where to 
live and work, what products to buy, leisure activities to pursue 
(1), or sports teams to support (2). Surveys also reveal a growing 
emotional divide, with members of each party increasingly disliking 
and distrusting the opposing party (3, 4). This phenomenon, called 
affective polarization, is manifested in people expressing warm 
feelings, i.e. in-group love, towards their ideological allies but nega
tive feelings and animosity, i.e. out-group hate, to members of the op
posing party. Over the last decade, cross-party antipathy has grown 
and now exceeds in-group love (5, 6). The escalating partisan ani
mosity poses a challenge to effective governing and the well-being 

of society. For example, during the COVID-19 pandemic individuals’ 
trust and adherence to public health recommendations, like wear
ing a mask or getting vaccinated, were shaped by whether their own 

political party supported or opposed those recommendations (7), 

hindering an effective response to the pandemic.
Research has shown that demographics alone cannot account 

for the partisan divide in beliefs and behaviors (8–10). Instead, these 

phenomena arise from collective social dynamics. The tendency to 

associate with others who are similar, a process known as homo

phily, amplifies chance correlations between individual preferences 

and ideology, giving rise to a unified behavior within a group over 

time. This effect was used to explain the emergence of stereotypes 

like “latte-drinking liberals” and “bird-hunting conservatives” (1). 
The rise of online media has further amplified social cleavages by 
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enabling people to align their information environments with their 
ideology. Similar to the mechanisms described above, these prefer
ences tend to segregate people within ideologically homogeneous 
communities, i.e. echo chambers (11, 12), which insulate them 
from opposing views and promote polarization. However, recent re
search has challenged this understanding (13), pointing to studies 
that show instead how increasing polarization can arise from ex
posure to opposing views.

This article presents a model of information cascades in an af
fectively polarized social network composed of two groups (e.g. 
red and blue), where individuals within each group like and trust 
members of their own group (in-group love) and dislike and dis
trust members of the other group (out-group hate).a When choos
ing between two possible choices (e.g. wear a mask or not, get 
vaccinated or not, which team to support in the Superbowl), indi
viduals observe their social connections and attempt to conform to 
the choices of their in-group and oppose choices made by members 
of their out-group. Depending on the size of the minority and ma
jority groups, homophily (preference of individuals to connect to 
others of the same group), and the levels of in-group conformity 
and out-group opposition, several different long-term outcomes 
can emerge, marked by a sharp boundary: global consensus (all 
individuals adopt the same choice), polarization (party-line div
ision of choices) and nonpartisan polarization in which each 
group’s choices are uniformly divided. We theoretically charac
terize the conditions under which such outcomes occur and pro
vide numerical experiments and results using two real-world 
social network datasets that yield further insights.

Despite its simplicity, the model exhibits remarkably complex 
behaviors and reconciles seemingly contradictory findings from 
literature. The model explains how rapid collective transitions, 
or tipping points in the opinion landscape (15), can emerge in social 
systems. Even when both parties are close to reaching a comprom
ise, the presence of such tipping points due to out-group hate has 
the potential to disrupt consensus, a pattern that is increasingly 
observed within emotionally polarized societies. It shows that op
position to the choices by members of the other party, driven by 
out-group hate, is a potent driver of polarization. When out-group 
hate is stronger than in-group love, no consensus is feasible. This 
may explain why disagreement on issues between Democrats and 
Republicans accelerated since 2012, when out-group hate ex
ceeded in-group love in the United States (6). The model also ex
plains why conventional wisdom-based approaches aimed at 
reducing polarization, such as connecting people from opposite 
parties, often backfire (13, 16). Specifically, our results corroborate 
the findings in Refs. (17–19) showing that consensus can be 
achieved only when antagonistic communities are loosely con
nected and in the absence of contrarian agents. The model illus
trates that the mere existence of people’s desire to be similar 
to the in-group (in-group love) and different from out-group 
(out-group hate) alone cannot fully explain the emergence of 
polarization; consensus can emerge even in the presence of such 
emotional divides. Going beyond, our analysis provides a compre
hensive explanation for the role of out-group hate, in-group love, 
group sizes, cross-party connections, and initial beliefs in shaping 
opinions. Our work suggests that emphasizing partisan differen
ces, even when they are small, can fuel polarization through a 
self-fulfilling prophecy. To counteract this, news media and social 
platforms could instead strive to diminish the perception of party- 
line differences to impede actual polarization. For example, our 
model theoretically explains why exposure to similar individuals 
from opposing parties may be one of the few effective methods 
to facilitate consensus in an affectively polarized society (20).

Although our model is parameterized by only two key quan
tities, it replicates a wide range of real-world phenomena and 
leads to new insights into polarization, as well as methods to miti
gate it. The theoretical tractability of the model, which yields 
closed-form expressions for its dynamics, reduces the need to 
rely on large scale simulations to obtain such insights and may 
lead to new solutions to control polarization. Easy implementa
tion on any arbitrary network also facilitates the study of affective 
polarization on synthetic and real-world networks.

Compared to existing models of opinion dynamics, the model we 
propose has three key differences: explicit parametrization of the in- 
group love and out-group hate, a bi-populated society (with two op
posing parties), and binary decisions. A theoretically tractable model 
that integrates all three of these essential characteristics of affective 
polarization has remained a gap in the literature. Models with a con
tinuous decision (opinion) variable (e.g. DeGroot type models (21), 
Altafani model (22), etc.) are not optimal for capturing the inherently 
binary nature of choices that end up being polarized along party lines 
(e.g. wear a mask or not, vaccinate or not (23, 24)). Models that have a 
binary decision variable (e.g. independent cascade model, linear 
threshold model (25)) do not explicitly account for the affective po
larization via in-group love and out-group hate in a bipopulated so
ciety. Despite being highly useful in understanding homogeneous 
populations composed of friends only, such models are not adequate 
for exploring affective polarization in bi-populated societies. While 
there have been models specifically aimed at understanding the 
emergence of affective polarization (e.g. (1, 13)), they do not provide 
an explicit parameterization of the two characteristic features of af
fective polarization, namely in-group love and out-group hate, or the 
theoretical tractability that yields closed-form expressions.

A model of information cascades with 
affective polarization
We present a dynamical model of how people make choices in a 
social network (e.g. to mask or support a sports team) by viewing 
the past choices of their in-group (e.g. members of their own 
party), which they approve of, as well as the choices of their 
out-group (e.g. cross-party members), which they oppose. The 
choice dynamics lead to an information cascade which reaches 
a steady state of partisan polarization or consensus depending 
on group sizes and the levels of in-group love and out-group 
hate.

Consider an undirected social network G = (V, E) with N = |V| in
dividuals. Each individual (node) v ∈ V has two binary attributes: a 
static binary attribute R(v) ∈ {0, 1} and a dynamic binary attribute 
Hk(v) ∈ {0, 1}, where k denotes discrete-time. The static attribute 
represents the group (e.g. political) affiliation: v is red (v ∈ R) if 
R(v) = 1; otherwise, v is blue (v ∈ B). Let NB = |B| and NR = |R| de
note the sizes of the two groups and r = NR/N denote the fraction 
of red nodes. The dynamic attribute Hk(v) ∈ {0, 1} represents v’s 
choice at time k (e.g. wearing a mask vs not wearing a mask).

At each time k (where k = 0, 1, 2, . . .), a node Xk ∈ V chosen uni
formly at random updates its choice by observing the choices of its 
neighbors. Let

din,0
k (Xk) =

􏽘

(Xk ,u)∈E

1(R(u) = R(Xk) ∧ Hk(u) = 0)/d(Xk)

din,1
k (Xk) =

􏽘

(Xk ,u)∈E

1(R(u) = R(Xk) ∧ Hk(u) = 1)/d(Xk)

dout,0
k (Xk) =

􏽘

(Xk ,u)∈E

1(R(u) ≠ R(Xk) ∧ Hk(u) = 0)/d(Xk)

dout,1
k (Xk) =

􏽘

(Xk ,u)∈E

1(R(u) ≠ R(Xk) ∧ Hk(u) = 1)/d(Xk)

(1) 
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denote the number of in-group and out-group neighbors with 
choice-0 and choice-1 at time k normalized by the total number 
of neighbors d(Xk). Node Xk updates its choice at k + 1 according to:

Hk+1(Xk)

=
0 if α din,1

k (Xk) − din,0
k (Xk)

􏼐 􏼑
− β dout,1

k (Xk) − dout,0
k (Xk)

􏼐 􏼑
< −δ

1 if α din,1
k (Xk) − din,0

k (Xk)
􏼐 􏼑

− β dout,1
k (Xk) − dout,0

k (Xk)
􏼐 􏼑

> δ
Hk(Xk) otherwise,

⎧
⎪⎪⎨

⎪⎪⎩

(2) 

where α, β, δ ∈ [0, 1] are constant model parameters. Choices 
of all other nodes except Xk ∈ V remain unchanged: for all 
u ≠ Xk, Hk+1(u) = Hk(u).

The above stylized model aims to capture the dynamics of 
choices in an affectively polarized society. To explain the intuition 
behind the model, let us consider masking as the dynamic attrib
ute.b Consider a red node v deciding whether to wear a mask dur
ing the pandemic. The red neighbors (in-group) that wear masks 
push v towards masking, whereas the red neighbors who do not 
wear masks push v towards not-masking. The out-group (blue) 
neighbors have the opposite effect: blue masking neighbors 
push node v towards not-masking, whereas blue nonmasking 
neighbors push the node towards masking. The relative strengths 
of these effects, in-group love and out-group hate, are quantified by α 
and β, respectively.c If the combined effect of out-group hate and 
in-group love exceeds δ in favor of a certain choice (1 or 0), then v 
adopts it. If not, it keeps it current choice. Thus, δ quantifies the 
level of inertia of a person, or the degree of social proof, including 
from the out-group, required to change the choice. Also note from 
Eq. 2 that, among the neighbors of v belonging to each group, only 
the difference between how many chose choice-0 and choice-1 
matters and not the ratio. Even with the normalization in Eq. 1, 
50 out of a total of 100 masking blue neighbors will create a greater 
out-group effect for a red node than when one out of two blue 
neighbors masks.

To analyze the dynamics, we examine the fraction of nodes in 
each group that have adopted choice-1 at time k. Formally, we 
define the state of the system at time k as the column vector 
θk = [θBk , θRk ]′ where,

θBk =
􏽐

v∈V 1(R(v) = 0 ∧ Hk(v) = 1)
􏽐

v∈V 1(R(v) = 0)
,

θRk =
􏽐

v∈V 1(R(v) = 1 ∧ Hk(v) = 1)
􏽐

v∈V 1(R(v) = 1)
.

(3) 

Since the node Xk is chosen randomly at time k to update its 

choice, the trajectory of the system θk = [θBk , θRk ]′, k = 0, 1, 2, . . . is 
also a random process. We show that the discrete-time stochas
tic trajectory θk, k = 0, 1, 2, . . . can be approximated using the 
continuous-time deterministic trajectory of a differential 
equation under a few assumptions. This differential equation 
representation of the stochastic model, called the limit mean 
differential equation can thus be used to analyze the emergence 
of various patterns in the social network over sufficiently large 
time horizons. We will focus on two cases of practical interest: 
a fully connected network and a stochastic block model.

Dynamics of the model in a fully connected 
network
We first consider a fully connected social network G = (V, E), 
where each node v ∈ V can observe the state of the system 
θk = [θBk , θRk ]′ at any time k. This occurs, for example, when people 
are informed about the prevalence of masking within each 

political party via daily news broadcasts and make their decisions 
to mask accordingly.

In such a graph, the piece-wise interpolationd of the discrete- 
time trajectory θk = [θBk , θRk ]′, k = 0, 1, 2, . . . can be approximated 
using the continuous-time trajectory θ(t) = [θB(t), θR(t)]′, t ≥ 0 of 
the following differential equation as the number of nodes in 
the graph N is large:

θ̇B

θ̇R
􏼔 􏼕

= 1 − θB
( 􏼁

pBθ (0→ 1) − θBpBθ (1→ 0)
1 − θR
( 􏼁

pRθ (0→ 1) − θRpRθ (1→ 0)

􏼢 􏼣

, (4) 

where,

pBθ (0→ 1) = 1 α(1 − r) 2θB − 1
( 􏼁

− βr 2θR − 1
( 􏼁

> δ
( 􏼁

,

pBθ (1→ 0) = 1 α(1 − r) 2θB − 1
( 􏼁

− βr 2θR − 1
( 􏼁

< −δ
( 􏼁

,

pRθ (0→ 1) = 1 α 2θR − 1
( 􏼁

− β(1 − r) 2θB − 1
( 􏼁

> δ
( 􏼁

,

pRθ (1→ 0) = 1 α 2θR − 1
( 􏼁

− β(1 − r) 2θB − 1
( 􏼁

< −δ
( 􏼁

.

The intuition behind the differential equation in Eq. 4 is as follows. 
In a fully connected network, each node is a neighbor of all 
other nodes. Thus, the node-level statistics in Eq. 1 can be 
written using the population statistics in Eq. 3. For a blue node Xk, 

we can write din,1
k (Xk) = θBk (1 − r), din,0

k (Xk) = (1 − θBk )(1 − r), dout,1
k (Xk) 

=θRk r, dout,0
k (Xk) = (1 − θRk )r. According to Eq. 2, a blue node Xk picks 

choice-1 when α(1 − r)(2θBk − 1) − β(2θRk − 1) > δ, i.e. positive influ
ence from the presence of choice-1 among in-group neighbors is lar
ger than the negative influence from the presence of choice-1 
among out-group neighbors by a margin of at least δ. Similarly, a 

blue node picks choice-0 when α(1 − r)(2θBk − 1) − β(2θRk − 1) < −δ. 

Since a fraction 1 − θBk of blue nodes have choice-0 and a fraction 

θBk of blue nodes have choice-1, the expected rate of change of 

blue nodes with choice-1 θBk can thus be written as θ̇B in Eq. 4, and 

similarly for θ̇R. When the network is large, the stochastic dynamics 
converge to the deterministic differential equation in Eq. 4. The for
mal proof of convergence (which uses tools from stochastic ap
proximation theory (28) and discontinuous dynamical systems 
(29)) is given in Supplementary material, Section A. Thus, for any 

initial state θ(0) = [θB(0), θR(0)]′, the continuous-time trajectory 

θ(t) = θ(0) + ∫ t
0θ̇(s)ds, t ≥ 0 obtained using Eq. 4 approximates the 

stochastic model dynamics θk = [θBk , θRk ]′, k = 0, 1, 2, . . ..
In the remainder of the article, we use Eq. 4 and its generaliza

tions to explore how polarized information cascades emerge in af
fectively polarized populations.

Dynamics of the model on a social network with 
communities
Next, we consider the case where the network G = (V, E) is 
sampled from a stochastic block model with two communities. 
Specifically, each node is connected to a node in the same party 
with probability ρ and a node in the other party with probability 
1 − ρ, where ρ ∈ (0, 1) is a constant model parameter. Thus, ρ 
quantifies the level of homophily (30) of the individuals in the popu
lation: ρ > 0.5 implies that individuals are more likely to connect 
with others of the same party (homophily), whereas ρ < 0.5 implies 
that individuals tend to mostly connect with members of the oth
er party (heterophily). When ρ = 0.5, the graph can be viewed as an 
Erdos–Rényi random graph with each edge being formed with a 
probability of 0.5.

Alternatively, ρ can be interpreted in the following way: each 
individual looks at a fraction ρ of their in-group members and a 
fraction 1 − ρ of their out-group members and makes a decision 
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based on their choices. Thus, ρ might also be used to represent the 
balance of information an individual receives from the news me
dia in terms of how well they represent the two parties: ρ > 0.5 
means the news consumed by an individual over-represents 
views of the in-group (relative to its size), while ρ < 0.5 means 
that the news over-represents the views of the out-group (relative 
to its size). When ρ = 0.5, each group is represented in the news 
proportionate to its group size.

The dynamics of the system θk = [θBk , θRk ]′, k = 0, 1, 2, . . . in a sto
chastic block model network can be approximated using the 
continuous-time trajectory of Eq. 4 with α replaced by αρ and β re
placed by β(1 − ρ). In other words, the homophily ρ amplifies the ef
fects of in-group love while reducing the effects of out-group hate. 
The exact differential equation for the stochastic block model is 
stated in Supplementary material, Section C.

Results
We analyze dynamics of the model and obtain insights about infor
mation cascades in an affectively polarized society. We first focus 
on a fully connected population with no inertia (i.e. δ = 0) that starts 
from an initial state with no party-dependency (θB(0) = θR(0)). The 
case δ = 0 describes a highly reactive population where individuals 
choices are driven by the direction of the net effect of in-group 
neighbors and out-group animosity and not the amount. Then, 
we extend the results to more general settings with homophily, 
and party-dependent initial states (θB(0) ≠ θR(0)).

Emergence of polarization in a fully connected 
network
Consider the case where choice-1 is initially equally popular in 
both groups (θB(0) = θR(0)). This describes the early COVID-19 pan
demic, when Democrats and Republicans were equally cautious 
about the disease and chose to mask. Remarkably, the long-term 
outcomes that emerge from a symmetric initial state can be char
acterized by just two quantities: the ratio of in-group love to out- 
group hate α/β and the ratio of group sizes r/(1 − r).

THEOREM 1 (Information cascades in a fully connected network 
with affective polarization)

Consider Eq. 4 which represents the dynamics of the state of the 
population θ(t) = [θB(t), θR(t)]′ under the proposed model in a fully 
connected graph. Let δ = 0 (i.e. no inertia) and θB(0) = θR(0) (i.e. ini
tial state is party independent). Then, the following statements 
characterize the asymptotic state of the system for various differ
ent values of α (level of in-group love), β (level of out-group hate), 
and r (fraction of red nodes in the network): 

• Case 1: Let β
α < r

1−r < α
β. If θB(0) = θR(0) > 0.5, then 

limt⟶∞ θ(t) = [θB∗ , θR∗ ]′ = [1, 1]′. If θB(0) = θR(0) < 0.5, then 

limt⟶∞ θ(t) = [θB∗ , θR∗ ]′ = [0, 0]′ i.e. there is no polarization and 
both groups fully adopt the choice that was initially more 
popular.

• Case 2: Let r
1−r > α

β and r
1−r > β

α. If θB(0) = θR(0) > 0.5, then 

limt⟶∞ θR(t) = [θB∗ , θR∗ ]′ = [1, 0]′. If θB(0) = θR(0) < 0.5, then 

limt⟶∞ θ(t) = [θB∗ , θR∗ ]′ = [0, 1]′ i.e. there is party-line polariza
tion and the red group (which is the majority) fully adopt 
the choice that was initially popular while the blue group fully 
adopt the other choice.

• Case 3: Let r
1−r < α

β and r
1−r < β

α. If θB(0) = θR(0) > 0.5, then 

limt⟶∞ θR(t) = [θB∗ , θR∗ ]′ = [0, 1]′. If θB(0) = θR(0) < 0.5, then 

limt⟶∞ θ(t) = [θB∗ , θR∗ ]′ = [1, 0]′ i.e. there is party-line polariza
tion and the blue group (which is the majority) fully adopt 
the choice that was initially popular while the red group fully 
adopt the other choice.

• Case 4: Let β
α > r

1−r > α
β. If θB(0) = θR(0), then 

limt⟶∞ θ(t) = [θB∗ , θR∗ ]′ = [0.5, 0.5]′. i.e. there is nonpartisan po
larization with half of each group adopting choice-1 and the 
remaining half adopting choice-0.

The limiting states in cases 1–3 (consensus and polarization along 
party lines) are locally asymptotically stable stationary states of 
the system in Eq. 4 whereas the limiting state in case 4 is an un
stable stationary state of Eq. 4.

Figure 1 provides a graphical illustration of the four cases 
in Theorem 1 containing the phase diagrame (top row) as well as 
example trajectories in both time domain (second row) and 
state space (third row). The proof of Theorem 1 is given in 
Supplementary material, Section B together with additional details 
(including closed-form expressions of the trajectories of θB(t), θR(t)).

Insights from Theorem 1
The four cases in Theorem 1 shed light on the forms of polariza
tion that can emerge in an emotionally divided population start
ing from a state with no group-level differences: (case 1) global 
consensus, where all nodes ultimately adopt the same choice, 
(cases 2 and 3) party-line polarization, where the choices are split 
along party lines, and (case 4) nonpartisan polarization, where 
each group is split evenly between the two choices. Below we con
sider additional insights from Theorem 1.

Out-group hate is necessary for polarization:
Note from Fig. 1,  that if β is approximately zero, then the network 
will always be in case 1 which achieves consensus from any 
party-independent initial state θB(0) = θR(0) ≠ 0.5.

Larger out-group hate relative to in-group love is sufficient 
for polarization:
When individual choices are driven more by a desire to oppose 
the out-group than a desire to conform to the in-group, some 
form of polarization is unavoidable regardless of group sizes. 
As a result, in the region to the left of the vertical line at α/β = 1 
in Fig. 1, consensus is not possible. If out-group hate is very 
high compared to in-group love (α/β ≈ 0 corresponding to case 
4), then each group will be evenly split between the two choices. 
When the disparity between α and β is not too large compared 
to group size disparity (i.e. β/α < r/(1 − r) or α/β > r/(1 − r)), polar
ization will emerge with the majority adopting the initially 
more popular choice and the minority adopting the other choice 
(cases 2 and 3 in Theorem 1). Further, party-line polarization 
is stable: a small deviation will push the system back to the 
polarized state as indicated by the arrows pointing to the polar
ized state in the state space plots of Fig. 1. Additional examples 
trajectories in the cases where polarization emerge are given in 
Fig. S4.

Larger in-group love relative to out-group hate leads to con
sensus as long as the group imbalance is not too large:
When the two groups have the same size (i.e. r = 0.5), case 1 of 
Theorem 1 shows that even a slightly larger in-group love 
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compared to the out-group hate (i.e. α > β) is sufficient for the net
work to adopt the initially popular choice, leading to consensus 
(see row i of Fig. S5 for an example). Even with unequal group 
sizes, consensus can be achieved with larger in-group love as 
long as the group imbalance is not large enough to push the sys
tem into case 2 or case 3. In other words, when α is sufficiently 
large compared to β , consensus can be achieved even in the pres
ence of unequal group sizes (see row ii of Fig. S5 for an example). 
Further, note that when β is negligible compared to α, consensus is 
always achieved when both groups start from the same initial 
state (gray diagonal line in state space plots). This highlights our 
claim that out-group hate is crucial for any form of polarization 
to occur from a party independent initial state θB(0) = θR(0). 
However, even with high in-group love α > β, a large enough group 

imbalance (r/(1 − r) > α/β or r/(1 − r) < β/α) can lead to polarization 
(as shown in row iii of Fig. S5). This observation emphasizes that 
more love than hate is necessary but not sufficient for consensus although 
more hate than love is sufficient for polarization. In other words, hate is 
a more powerful divider than love is a unifier in the context of po
larization, aligning with the saying that “bad is stronger than good” 
from the psychology literature (31).

Majority cannot fully adopt the initially unpopular choice:
When r > 0.5 (region above y = 1 line in Fig. 1) and θB(0) = θR(0) > 
0.5 (i.e. choice-1 is initially more popular), there cannot be a 
case where all of the red group adopts choice-0. In general, start
ing from a state θB(0) = θR(0) in a fully connected network, the ma
jority cannot adopt the initially less popular choice.

Fig. 1. Phase diagram of the model (top) and four example trajectories. The four different regions of the phase diagram (defined by the ratio of in-group 
love to out-group hate and the ratio of group sizes) lead to different long-term outcomes in a fully connected network when both groups start from the 
same initial state (i.e. θB(0) = θR(0)). The long-term outcomes are: (case 1, yellow) No Polarization, (case 2, red/case 3, blue) Partisan Polarization, and (case 
4, green) Non-Partisan Polarization. Example trajectories in both time-domain and state space are shown below the phase diagram for θB(0) = θR(0) = 0.8. 
The blue and red color areas in state space indicate regions where θB(t), θR(t) increase (i.e. regions where pBθ (0→ 1) = 1 and pRθ (0→ 1) = 1 according to 
Eq. 4). The black arrows in state space plots indicate the path of the differential equation Eq. 4. The purple arrows map the time domain trajectory to 
the state space.
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Small perturbations from nonpartisan polarization (case 4) 
can lead to party-line polarization but not to consensus:
Consider case 4 in Theorem 1 where the population is evenly split 
between the two choices, regardless of group membership. This 
stationary state θB(t) = θR(t) = 0.5 is unstable, and a small change 
in θB(t) or θR(t) can lead the population to polarize along party 
lines. This can be seen from state space plot corresponding to 
case 4 in Fig. 1: a small deviation from θB(t) = θR(t) = 0.5 caused 
by a change of either θB(t) or θR(t) will lead to party-line polariza
tion. For example, if just a few red nodes switch to choice-1 from 
choice-0, θB(t) will converge to 1 and θR(t) to 0.

Thus, even on a fully mixed population containing a majority 
and a minority that are not initially polarized, out-group hate 
and in-group love alone can lead to the emergence of a wide array 
of cascading choices.

Implications for networks with echo chambers
Next, we consider the case where the network G = (V, E) is sampled 
from a stochastic block model with two communities, where 
each node is connected to ρ fraction of their in-group members and 
1 − ρ fraction of their out-group members, and ρ gives the homophily 
of the network. Recall from Dynamics of the model on a social net
work with communities section that the dynamics of the model 
with homophily can be obtained by replacing α and β in Eq. 4 with 
αρ and β(1 − ρ), respectively. Consequently, replacing α and β in 
Theorem 1 and Fig. 1 with αρ and β(1 − ρ) leads to a characterization 
of the forms of polarization that can emerge in the presence of in- 
group love, out-group hate, homophily as well as a minority/majority 
division of the population. This is illustrated in Fig. S1. We now discuss 
some insights on how these factors can collectively affect the emer
gence of polarization.

Neutral homophily is indistinguishable from the fully 
connected graph:
When people are neither homophilic nor heterophilic (ρ = 0.5), the 
continuous-time trajectory in a stochastic block model is the 
same as the continuous-time trajectory in a fully connected graph 
given in Eq. 4 (since both sides of the inequalities inside indicator 
functions in Eq. 4 would be multiplied by 0.5). Thus, Theorem 1 as 
well as insights discussed in Emergence of polarization in a fully 
connected network section are applicable not only to fully con
nected graphs but also to Erdos–Rényi random graphs where edges 
are formed in an independent and identically distributed manner.

Highlighting the choices of the out-group in social 
networks may lead to polarization:
A typical approach to reducing partisan divisions calls for increasing 
the number of cross-party links. For example, consider the case where 
the two parties are approximately equal in size (r ≈ 0.5) and α > β, 
which corresponds to case 1 of Fig. 1 where β

α < r
1−r < α

β. Thus, when 
an individual looks at the entire population (i.e. a fully connected 
graph) or an unbiased sample of the population (i.e. an Erdos–Rényi 
random graph), universal consensus is achieved. Then, consider the 
case where the individual observes others in a biased manner, where 
each in-group member is observed with probability ρ and each out- 
group member with probability 1 − ρ. If ρ < 0.5, the out-group will 
be over-represented compared to its size, amplifying the effect of out- 
group hate while reducing the effect of in-group love. Thus, the popu
lation could move to the red (case 2) or blue regions (case 3) of Fig. 1
where αρ

β(1−ρ) ,
β(1−ρ)

αρ > r
1−r or αρ

β(1−ρ) ,
β(1−ρ)

αρ < r
1−r i.e. partisan polarization 

can emerge starting from a uniform initial state where the choice is 

equally popular in both groups. Even a small increase in the number 
of cross-party links is likely to give rise to polarization (case 2 or case 3) 
from a nonpolarized state (case 1) when αρ

β(1−ρ) ≈ r
1−r or β(1−ρ)

αρ ≈ r
1−r (i.e. 

near the boundaries of case 1 in the phase diagram of Fig. 1 with 
x-axis re-scaled as αρ

β(1−ρ)). Thus, merely increasing the number of cross- 
party connections among the two groups may in fact facilitate polarization in
stead of consensus by amplifying the effect of out-group hate. Figure 2 shows 
two different trajectories of θ(t) where the two groups start from the 
same initial state. Consensus is achieved for a homophilic network 
(ρ = 0.7), where individuals get more information about the in-group, 
while polarization emerges in an unbiased network (ρ = 0.5). This is 
because decreasing ρ from 0.7 to 0.5, pushes the network to case 2 
in Fig. 1 (with x-axis re-scaled as αρ

β(1−ρ)).
In fact, increased exposure to the out-group (i.e. decreasing ρ) can 

bring divisions to a society already at global consensus. See Fig. S6 for 
an example. Note that global consensus remains at higher homo
phily (Case 1 in Fig. 1), and decreasing  ρ to 0.5 makes the network un
biased but amplifies out-group hate, pushing it to case 3, where the 
majority stays in the initial state but the minority adopts the choice 
that no one had chosen at the beginning. Further decreasing homo
phily makes the network highly heterophilic, where both groups fo
cus largely on the out-group, pushing it to case 4. As this state is 
unstable, a small deviation causes polarization with one group 
adopting choice-1 and the other adopting choice-0. Thus, in a society 
with multiple ideologies, choices being driven by what the “opposition 
does” more than what “our own group does” can lead to divisive (Case 2 
and Case 3 in Fig. 1) and even unpredictable (case 4 in Fig. 1) polariza
tion of choices, even if the society was initially united. In practice, 
such situations occur when partisan information sources (e.g. 
news organizations) emphasize the choices, decisions and actions 
of the out-group more than those of the in-group.

Relatedly, recall from Eq. 4 that when the two groups are ap
proximately equal in size (i.e. r ≈ 0.5) and ρ = 0.5 (unbiased net
work), people’s choices are driven by θ(t) = [θB(t), θR(t)]′ i.e. the 
prevalences of choice-1 in the in-group and out-group. If the popu
larity of choices is misrepresented in the information they receive 
at some time instant, that itself could lead to polarization. For ex
ample, consider latte drinking as the choice and assume that it is 
equally prevalent among liberals and conservatives. However, if 
conservatives are selectively exposed to latte-drinking liberals, 
giving the perception that latte drinking is highly prevalent among 
them, that may cause them to give up lattes due to the out-group 
hate effect, and that in turn would lead liberals to further embrace 
it. Once this divergence takes off, it will be further amplified by the 
in-group love, leading to the eventual polarization of a seemingly 
nonpartisan choice (1). Thus, even if a choice is not initially polar
ized, making it appear to be so in the news or on social media by 
selectively emphasizing the out-group, can eventually lead to po
larization in the form of a self-fulfilling prophecy. This serves as 
one possible explanation of why even traits that are historically 
nonpartisan, such as the preferred choice of beverage, leisure activ
ity, vocabulary, etc., can start to diverge along party lines when the 
prevalence of that trait in the opposite party is emphasized in the 
digital news (13). Hence, news and social media platforms should 
take steps to avoid giving the perception of a choice being a partisan 
signal (e.g. via content and link recommendation algorithms) in or
der to avoid them actually ending up being partisan issues.

Group-dependent initial states
When choices are not initially identically distributed in the two 
groups, several interesting phenomena can emerge. The differen
tial equation in Eq. 4 (and its generalization to stochastic block 
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models) can be used to study such phenomena as well. We begin 
by stating a result which characterizes conditions that lead to 
consensus from a party-dependent initial state.

THEOREM 2 (Consensus from party-dependent initial states)

Consider dynamics of the model on a fully connected graph given 
in Eq. 4 with δ = 0 (i.e. no inertia). Consensus emerges from a 
group-dependent initial state θB(0) ≠ θR(0) if and only if, 

1. β
α < r

1−r < α
β, and,

2. the initial state satisfies β
α(1−r) < 2θB(0)−1

2θR(0)−1
< α

β(1−r).

The first condition of Theorem 2 states that the system has to be in 
case 1 of Fig. 1, which ensures that consensus is a stable steady state of 
the system. The second condition of Theorem 2 states that initial dis
tribution of the choices within the groups cannot be too different from 
each other. The two conditions collectively ensure that consensus is 
reachable from the initial state. Any parameter configuration 
(α, β, r) or an initial state that does not satisfy the two conditions 
will give rise to polarization. The result further highlights the difficul
ties that lie in the path towards consensus in an affectively polarized 
society: even with high in-group love and balanced group sizes, the 
initial differences between the two parties can lead to polarized 
choices. In order to avoid this, social and news media through which 
people estimate the choice distributions must avoid emphasizing the 
differences between groups of different political ideologies.

A group can flip:
When the groups start from different initial states, their trajectories 
can change direction. For example, consider the three cases in 

Fig. 3. In case i of Fig. 3, in-group love is higher than out-group hate 
(i.e. α > β) and choice-1 is initially more prevalent within each group 
but to a different degree. Due to higher in-group love, each group ini
tially begins to embrace the choice-1 that is more popular within it. 
However, as this choice becomes more popular in the majority red 
group, the opposition intensifies in the minority blue group, which 
starts to adopt choice-0, leading to the eventual polarization. 
Interestingly, the flip occurs when the population is very closer to con
sensus. This represents how political negotiations in an affectively po
larized society can very unexpectedly break down even when they are 
on the verge of reaching bi-partisan agreements: the high presence of 
the same choice in both groups amplifies the effect of out-group hate. 
More precisely, in-group love is high enough to get closer to consensus 
(due to the satisfied second condition of Theorem 2), but it is not high 
enough to make consensus a stable stationary state (due to violated 
first condition). More in-group love would drive both groups to con
sensus by focusing on unity within their own party rather than on 
hate towards the other party. Cases ii and iii of Fig. 3 show scenarios 
with higher out-group hate where both conditions of Theorem 2 are 
violated. In case ii, choice-1 is initially more prevalent in both groups 
but they both initially start adopting choice-0 due to higher out-group 
hate. However, as choice-0 becomes the more prevalent among the 
majority, the minority blue group starts adopting choice-1. 
Eventually, the trajectories converge in the opposite direction. Case 
iii of Fig. 3 shows a similar scenario where the majority red group re
verses the trend. The theoretical tractability of the model Eq. 4 helps 
identify the exact trajectories for any initial state as seen from Fig. 3.

The majority can eventually fully adopt the initially less 
popular choice:
Unlike the setting where both groups start in the same initial 
state, the majority can fully adopt the initially less popular choice 

Fig. 2. An illustration of how decreasing homophily can cause a party-line polarization. Both figures correspond to α = 0.8, β = 0.7 (larger in-group 
favoritism compared to out-group animosity) and r = 0.65 (a majority red group). First row corresponds to a homophilic network (intergroup links are 
more likely to form than intragroup links) with ρ = 0.7 whereas second row corresponds to an unbiased network (all links are equally likely to form). Note 
that decreasing ρ from 0.7 (homophily) to 0.5 (unbiased) increases the effect of out-group hate and decreases the effect of in-group love on the choices, 
and pushes the social network from case 1 (consensus) to case 3 (party-line polarization) in Fig. 1 (with x-axis re-scaled as αρ

β(1−ρ)).
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when the two groups start in different initial states. Figure S7
shows an example of a case where choice-1 is initially more popu
lar among both groups: θB(0) = 0.9 and θR(0) = 0.6. Also, 60% of the 
nodes in the network are red, making it the majority. However, the 
red group eventually abandons choice-1 due to the out-group hate 
effect resulting from the high popularity of choice-1 among the 
blue group (despite a smaller β). In other words, due to high initial 
unity of the minority blue group, the majority red group is driven 
more by a desire to oppose the blue party than to unite within their 
party. The minority blue group fully adopts choice-1 due to the 
higher in-group love effect created collectively by larger α and 
the high initial popularity of choice-1 within their group.

Experiments with real-world networks
In this section, we evaluate the proposed model on two real-world 
social network datasets from Facebook and Brightkite to illustrate 
that the dynamics of the model on these networks align closely 
with the theoretically derived expressions and insights. The 

Facebook dataset (32) contains 4,039 nodes and 58,228 edges, 
while the Brightkite dataset (33) contains 88,234 nodes and 
214,078 edges. Using these two datasets, we first explore how 
the insights obtained under the unbiased (i.e. no party homophily, 
or equivalently, fully connected) assumption agree with dynamics 
on real-world networks. We then explore the implications of com
munity structure and party homophily.

Unbiased (nonhomophilic) network setting
For each network, the dynamics are obtained as follows for 
any model parameter configuration α, β, r and initial states 
θB(0), θR(0). First, a random fraction r of network nodes are as
signed to the red group and the rest to the blue group. This assign
ment of parties (node colors) independent of everything else leads 
to neutral homophily (i.e. neither homophilic nor heterophilic). 
Then, a fraction θR(0) of red nodes are initialized with dynamic at
tribute 1 and the remaining red nodes are initialized with the dy
namic attribute 0. The initial dynamic attributes of the blue group 

Fig. 3. An illustration of three cases where the two groups start at different initial states i.e. θB(0) ≠ θR(0), and one group reverses its direction. In cases i 
and ii, the minority blue group reverses its direction. In case iii, the majority red group reverses its direction. The blue and red lines in state space indicate 
the tipping points in opinion landscape where the respective group reverses its trend when the trajectory reaches it. The proposed model can demonstrate 
a variety of such phenomena when the initial states are different for the two groups.
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are similarly assigned according to θR(0). Then, at each time step, 
a node from the network is chosen uniformly at random and its 
dynamic attribute is updated according to Eq. 2.

We consider seven different configurations of the model pa
rameters α, β, r: the results using four different configurations 
with θB(0) = θR(0) (same as Fig. 1) are given in Fig. 4 and results 
with three different configurations with θB(0) ≠ θR(0) (same as 
Fig. 3) are given in Fig. 5. For each parameter configuration, 
the first column shows the theoretically derived trajectory 
θ(t) = [θB(t), θR(t)]′ under the assumption of an unbiased network 
with neutral homophily (i.e. the stochastic block model discussed 
in Dynamics of the model on a social network with communities 
section with ρ = 0.5 that is similar to an Erdos–Rényi graph)f. 
Column 2 (Facebook) and column 3 (Brightkite) show 50 independ
ently simulated trajectories of θk = [θBk , θRk ]′, k = 0, 1, 2, . . .. The 
shaded blue and red areas indicate the 95% CI of the trajectories 

of θBk and θRk , respectively. Several important observations can be 
made from the results as we discuss next.

The dynamics on real-world network resemble the theoret
ically predicted model dynamics for party-independent 
initial states:
For each considered parameter configuration in Fig. 4 where 
θB(0) = θR(0), the trajectories on both real-world networks closely 
agree with the theoretically predicted behavior under the unbiased 
(or equivalently, the fully connected) assumption. In particular, 
the emergence of consensus (Fig. 4: row 1) and partisan polarization 
(Fig. 4: rows 2 and 3) can be clearly observed in both Facebook and 
Brightkite datasets. Further, the unstable nature of the nonpartisan 
polarization can also be seen in both real-world networks where 
both groups approach nonpartisan polarization (θB(t) ≈ θR(t) ≈ 0.5) 

Fig. 4. The figure shows the trajectories of the model on an unbiased network (column 1—theoretical trajectories for the stochastic block model outlined 
in Dynamics of the model on a social network with communities section with ρ = 0.5) and two real-world social networks (column 2—Facebook and 
column 3—Brightkite). Both groups start from the same initial state (θB(0) = θR(0)) and the model parameters (α, β, r) for the four rows correspond to the 
four cases shown in Fig. 1. It can be seen that the theoretically predicted trajectory (column 1) closely resembles the trajectories for both real-world 
networks (columns 2 and 3) in each case.
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and then the trajectories show a divergence. This remarkably close 
agreement with theoretical predictions (under fully connected or 
unbiased assumptions) indicates the practical usefulness of the 
model and analysis. Specifically, it illustrates how our theoretical re
sults, such as the phase diagram in Fig. 1 derived under fully con
nected assumption, are useful to understand dynamics of 
affective polarization on real-world networks. The empirical results 
also show how the proposed model can be used in any real-world 
network to investigate the dynamics of affective polarization.

The theoretically predicted and empirically observed 
dynamics agree for party-dependent initial states as well:
As seen from Fig. 5, the theoretically predicted dynamics align 
closely with the empirically observed trajectories when initiated 
from party-dependent initial states (θB(0) ≠ θR(0)) as well. In 
particular, the real-world networks illustrate the emergence of 
partisan polarization in all three cases of Fig. 5. The cases corre
sponding to rows 2,3 of Fig. 5 clearly show even the tipping points 
where one group reverses their trend.

While there is a close alignment between the theoretically 
predicted dynamics and the dynamics observed via real-world 
network structures, they are not exactly the same. For example, 
unlike the fully connected networks, θBk , θRk approach but do not 
fully converge to 1 or 0 in the real-world networks but become 
stationary after getting closer to the theoretically predicted val
ue. This deviation is more visible in Brightkite network com
pared to Facebook (for example, in Fig. 4: row 1). Relatedly, we 
also note that trajectories on the Facebook network indicate a 
closer agreement with the theoretical predictions. However, 
Facebook dynamics also has larger variance (at any given time 

instant) compared to the Brightkite network. A reason for the 
larger variance could be the fact that the Facebook network is 
structurally richer compared to the Brightkite network, with a 
larger clustering coefficient, a smaller diameter and more closed 
triangles.

Implications of homophilic communities
In this section, we focus on homophilic and heterphilic networks 
(as opposed to the neutral homophilic cases we focused in the pre
vious section). The key aim is to illustrate the validity of the in
sights from Implications for networks with echo chambers 
section (about community structure, homophily and heterophily) 
in real-world network settings.

We utilize The Facebook dataset (32) (described earlier) to explore 
the implications of homophilic communities as its high average 
clustering coefficient (0.61) (compared to the Brightkite network: 
0.17) helps better study communities and homophily (see Fig. S2
for a visual illustration obtained using Louvain method (34)). We 
consider three different assignments of the parties (red and blue) 
to the nodes while keeping the fraction of red nodes r = 0.53 fixed 
for all three assignments (see Supplementary material, Section D. 
1 for details): Fig. 6(a) homophilic (party assortativity is 0.58), 
Fig. 6(c) unbiased (party assortativity is 0.00), and Fig. 6(e) hetero
philic (party assortativity is −0.13). Then, the model was imple
mented for each network with initial state θB(0) = θR(0) = 0.8 and 
α = 0.7, β = 0.5. Each panel on the second column of Fig. 6 shows 
50 independently simulated trajectories of θk = [θBk , θRk ]′, k = 
0, 1, 2, . . . where the shaded blue and red areas indicate the 95% 
CI of the trajectories of θBk and θRk , respectively.

Fig. 5. The figure shows the trajectories of the model on an unbiased network (column 1—theoretical trajectories for the stochastic block model outlined 
in Dynamics of the model on a social network with communities section sec with ρ = 0.5) and two real-world social networks (column 2—Facebook and 
column 3—Brightkite). The groups start from the different initial states (θB(0) ≠ θR(0)) and the model parameters (α, β, r) for the three rows correspond to 
the three cases shown in Fig. 3. It can be seen that the theoretically predicted trajectory (column 1) closely resembles the trajectories for both real-world 
networks (columns 2,3) in each case.
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Homophilic communities can facilitate consensus in an 
affectively polarized society:
It can be seen that homophilic network achieves near perfect con
sensus with both groups almost fully adopting the dynamic attri
bute 1 eventually (θBk ≈ θRk ≈ 0.9 for large k). With the exact same 
parameters, the heterophilic network lead to party-line polarization 
with the red group largely adopting the dynamic attribute 1 and the 
blue group adopting the dynamic attribute 0 (θBk ≈ 0m, θRk ≈ 1 for 
large k). In the neutral case, θk = [θBk , θRk ]′ does not polarize but also 
does not fully unite with ∼80% (on average) individuals in each 

group eventually adopting the dynamic attribute 1. These results 
support the theoretical results in Implications for networks with 
echo chambers section. In particular, even though the in-group 
love α = 0.7 exceeds the out-group hate β = 0.5, the heterophily amp
lifies the out-group hate enough to cause party-line polarization. 
This result highlights why breaking up echo chambers in real-world 
social networks should be done in a careful manner to avoid facili
tating polarization.

Interestingly, we also note that the network in Fig. 6e is only 
slightly more heterophilic compared to the neutral (unbiased) 

a b

c d

e f

Fig. 6. The effect of homophily and heterophily on dynamics of affective polarization illustrated via the Facebook dataset with α = 0.7, β = 0.5, and 
r = 0.53. The homophilic (a), neutral (c) and heterophilic (e) node color assignments lead to three different behaviors. Compared to the dynamics under 
the neutral assignment (d), homophily facilitates consensus (b) and heterophily facilitates partisan polarization (f). This empirical result supports our 
theoretical finding that high exposure to the out-group can amplify party-line polarization.
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network in Fig. 6c. Yet, this relatively small heterophily is large 
enough to cause clearly visible party-line polarization as opposed 
to the near-consensus achieved in unbiased network. This obser
vation indicates how the proposed model can be useful for under
standing the importance of network properties on the dynamics of 
affective polarization as well as for devising strategies to prevent 
polarization.

Conclusion
This article introduced a dynamical model of decision making in a 
society where people trust the choices of those with same political 
views while distrusting the choices of those with opposing political 
views. The model is theoretically tractable and reveals the condi
tions for the emergence of consensus and partisan divisions from 
the initial state where there are no divisions. Our analysis highlights 
the importance of intergroup animosity in driving partisan division. 
Not only does out-group hate enable party-line polarization, but 
when it is larger than in-group love, consensus is no longer achiev
able. In particular, more hate than love is sufficient for partisan divisions 
while more love than hate is necessary for consensus. When partisan 
mass media emphasize the choices of the out-group more than in- 
group (i.e. focusing on the other group more than own group), it amp
lifies the effects of out-group hate and facilitates the emergence of 
polarization. This may create self-fulfilling prophesies where the 
perceptions of polarization actually give rise to polarization and ex
plains why, counter to our intuition, cross-party exposure facilitates 
polarization rather than deterring it. High out-group hate can shatter 
consensus even when both parties are on the brink of agreement, a 
trend that is becoming increasingly common within emotionally po
larized societies. Further, results obtained by implementing the 
model on two real-world social network datasets (Facebook and 
Brightkite) show a close agreement with the theoretical results. 
The model and its theoretical tractability will also be useful to com
putational social scientists and network scientists to model the im
plications of affective polarization in future research and to gain 
insights on how to avoid its adverse implications on society.

Limitations and future directions
The proposed model and its analysis has limitations that open up di
rections for future research. First, our main results assumed a setting 
with fixed (static) model parameters (α, β). Although we briefly illus
trated how the model can be extended to time-varying parameters, a 
systematic study supported with empirical evidence on how affect
ive polarization (α, β) vary together with the ideological and opinion 
polarization (θ(t)) is a timely direction of research. Game theoretical 
(such as (35)) and dynamical system-based methods may be useful 
in this direction. Also, the model that we proposed assume that peo
ple make choices primarily by observing others’ choices instead of 
the consequences of such choices. Though this approach is suitable 
for analyzing settings such as the choice of drinks, choice of leisure 
activities, etc., people do look at the consequences of choices (i.e. 
whether the result of the choice has been positive or negative in 
the past) when making more important decisions. Such examples in
clude personal health choices (e.g. vaccines, abortion) and financial 
decisions. Improving the model to consider how people incorporate 
consequences of their past choices as well as the choices of their 
neighbors remains an important direction for future research. 
Bayesian social learning methods (36) may be useful in this direction. 
Further, our theoretical analysis of the model was done under simpli
fying assumptions on the structure of the network (e.g. fully con
nected networks, Erdos–Rényi type networks, stochastic block 

models). Extending the insights obtained under those assumptions 
to further types of network models (e.g. small world model, preferen
tial attachment model, etc.) would provide a better picture of the im
plications of the network structure on dynamics of affective 
polarization. Similarly, the dynamics of the network (37) itself can 
also be incorporated into the model via approaches such as network 
rewiring (38, 39). Relatedly, exploring how various network properties 
(e.g. degree distribution, community structure, diameter) as well as 
network scientific phenomena (e.g. perception bias (40, 41)) can affect 
the dynamics of affective polarization is an interesting future re
search direction. Another practically important direction is the 
estimation of model parameters (in-group love and out-group 
hate) using data collected from online social networks. Such a 
principled estimation framework can shed light on the role that 
each factor (in-group love and out-group hate) plays on opinion 
polarization. Prior work has shown that network scientific phe
nomena such as the friendship paradox may be useful for devis
ing such estimation methods (42–45). Lastly, our model and 
results primarily focused on a two-party system similar to the 
US political landscape. Generalizing the model to include more 
than two different political parties will make the model applic
able to settings beyond two-party systems.

Notes
a This leads to a form of signed network such as those studied in 

Ref. (14).
b We choose masking as the motivating example as it has been at the 

center of a recent contentious debate during the COVID pandemic, 
with empirical evidence showing that people’s choices have been 
heavily affected by party identity (26). Though we use masking as a 
motivating example, the broad aim of our work is to study how 
many seemingly nonpolitical decisions such as choice of drink (e.g. 
“latte drinking liberals” (1), Bud Light boycott (27)), choice of leisure 
activities (e.g. “bird-hunting conservatives”), personal health precau
tions (e.g. masking), etc., end up being polarized along party lines.

c In this article, we assume that the parameters α, β are in the interval 
(0, 1) and remain constant. These assumptions can easily be re
laxed to include settings such as out-group ignorance (β = 0), out- 
group love (β < 0), as well as time varying parameters (i.e. dynamic 
model parameters). We illustrate these generalizations in 
Supplementary material, Section E with example scenarios.

d The piece-wise interpolation of θk, k = 0, 1, 2, . . . refers to the continu

ous time trajectory θ
1
N(t) = θk for t ∈ k

N , k+1
N

􏼂 􏼁
for discrete time 

k = 0, 1, 2, . . .
e Figure S3 shows the phase diagram with logarithmic axes. Since 
each axis of the phase diagram is a ratio of values, the logarithmic 
axes convey symmetry of the role of parameters.

f Recall from Implications for networks with echo chambers section 
that Erdos–Rényi type networks lead to the same dynamics as fully 
connected networks. Thus, the theoretically derived trajectories in 
column 1 of Figs. 4 and 5 can be viewed as based on fully connected 
networks as well.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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