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In combinatorial auctions, buyers and sellers bid not only for single items but also for
combinations (or “bundles,” or “baskets”) of items. Clearing the auction is in general an
NP-hard problem; it is usually solved with integer linear programming. We proposed in
an earlier paper a continuous approximation of this problem, where orders are aggregated
and integrality constraints are relaxed. It was proved that this problem could be solved
efficiently in two steps by calculating two fixed points, first the fixed point of a contraction
mapping, and then of a set-valued function. In this paper, we generalize the problem to
incorporate constraints on maximum price changes between two auction rounds. This
generalized problem cannot be solved by the aforementioned methods and necessitates
reverse convex programming techniques.

1. Introduction

Trading combinations are becoming more and more popular, not only on securities and
commodities exchanges, where they were born, but also on business-to-business (B2B)
auctions for other types of items. Both types of exchanges need fast algorithms to clear
the combinatorial auction, or the combination trading (CT) problem. In some partic-
ular cases, an auction can be designed to be computationally manageable [8], that is,
network optimization can be used. In the most general case, auctions are integer linear
programs. Even when the integrality constraint is relaxed, computing times increase dra-
matically with the size of the problem [10]. This paper explores different formulations
of the combinatorial auction problem, which are computationally more efficient on large
problems.

When markets are deep, that is, there is a large number of orders in each commodity
or baskets of commodities, it becomes advantageous to aggregate orders; furthermore, we
can greatly reduce the size of the problem by adopting a different formulation of CT, the
market balance problem (MB). In [10], we constructed an approximation of MB, called
the continuous MB model, in which staircase demand/supply functions are approximated
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by continuous functions. The continuous MB problem can be solved efficiently by cal-
culating the fixed point of a contraction mapping. This solution can be used as a start-
ing point for a homotopy algorithm which calculates the solution of the original MB
problem.

In this paper, we examine the effect of additional price constraints on the combination
trading problem. These constraints often arise in a continuous trading environment: ex-
changes close when prices change too wildly. In a batch trading environment, a similar
mechanism is to match only a subset of the orders; in case of a market crash, sell orders
for instance would be matched only if their limit price is less than a fixed percentage (e.g.,
90%) of the previous round clearing price. Like CT, the combination trading with price
constraints (CTPC) problem can be transformed into a much smaller model, the market
balance model with price constraints (MBPC). The approximation of MBPC, that is, the
continuous MBPC model, cannot however be transformed into a fixed point problem,
so we developed areverse convex approximation (RCP1), which can be solved by reverse
convex programming algorithms (see, e.g., [3, 4, 5, 6, 7, 12]). The solution of the con-
tinuous MBPC problem can then be used as an initial solution of a homotopy algorithm
to find the solution of the original MBPC problem. Each step of the homotopy requires
solving a different instance of another reverse convex program, which we call RCP2 here-
after.

2. The combination trading with price constraints problem

Notation. In the special case when each ith component of the value of a function f map-
ping an m-dimensional space to an m-dimensional space depends only on the ith com-
ponent xi of the argument xi, we use the notation f (x) for the vector value, and fi(xi) for
the component value. When applied to one term, the square parenthesis means “the in-
teger part of”: [xi] is the largest integer smaller than the real number xi, whereas a[b+ c]
is the product of a by the sum of b and c, as usual.

In our model, traders place limit orders on an exchange, with a limit price, and a
limit quantity. The exchange sets a clearing price for each commodity, and allocates re-
alized quantities to buyers and sellers against cash. However, only the buyers with limit
price superior or equal to the buy clearing price are matched, where the buy clearing
price is constrained by the exchange. Reciprocally, only sellers with limit price inferior
or equal to the sell clearing price are matched. Partial matching is allowed, meaning that
buyers/sellers can trade any quantity up to the limit quantity, provided that the rules
mentioned above are respected.

There are two kinds of commodities: primitive commodities, and combinations. Com-
binations are defined in terms of the quantity of each primitive commodity a combina-
tion buyer receives or delivers after his combination order is executed. We have m prim-
itive commodities and n−m combinations. Each commodity i= 1···n is therefore de-
fined by a real-valued vector ai, which stores the coefficients of each primitive commodity.
The column vectors ai are collected in a matrix A. For convenience, we place the primitive
commodities to the left of the matrix A, therefore we write

A=
[
I AN

]
. (2.1)
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Throughout the text, we will use the superscripts B and N to denote primitive “basic”
commodities, and combinations, respectively. The superscript B should not be confused
with the superscript b which is applied to “buy orders” as opposed to the superscript s
which is applied to “sell orders.”

We analyze the particular case of an auction where only sellers are allowed to place
combination orders. Note that we could have analyzed the symmetric problem, where
only buyers are allowed to place combination orders. This restriction is of interest because
many B2B exchanges are currently either buyer auctions or seller auctions. If both buyers
and sellers were allowed to trade combinations, our first reverse convex program (but not
the second one) would have multiple reverse convex constraints.

We assume without loss of generality that each trader places only one order.
As mentioned in [8], we can analyze traded quantities at three levels of trade aggre-

gation. At the lowest level of trade aggregation, we keep track of each deal between the
traders. At the middle, we aggregate each deal a trader participated in his allocation. At
the highest level, we group all traders with the same limit price.

2.1. Middle level of trade aggregation. On each commodity i, we have Nb(i) buyers
and Ns(i) sellers. Each buyer b = 1···Nb(i) of commodity i places a limit order with
integer-valued limit price β(i,b) and positive quantity qb(i,b). Each seller s= 1···Ns(i)
of commodity i places a limit order with limit price σ(i,s) and limit quantity qs(i,s). The
exchange institution then selects three n-dimensional real-valued vectors, the clearing
price p, the buy clearing price pb, and the sell clearing price (with ps ≤ p ≤ pb); and an
allocation zb(i,b) ≥ 0 for each buyer and zs(i,s) ≤ 0 for each seller. Again, without price
constraints, the model would simplify to CT, that is, p = pb = ps. The exchange can set
the clearing price according to various rules, without changing the results of this article;
a good choice would be

p = pb + ps

2
. (2.2)

Given the transaction price π from the previous round of trading, the auctioneer de-
cides upon a percentage α between 0 and 1 (such as 90%), in order to bound the varia-
tion of the clearing price. The exchange could place constraints on either one of the three
clearing prices. Without loss of generality, we choose the sell clearing price. The price
constraint is

απ ≤ ps ≤ π

α
. (2.3)

As we will see later, optimal prices are consistent, that is,

π =
[
πB πBAN

]
. (2.4)

Therefore, the price constraints have a particular structure. Note that the exchange
could also impose sectorial price constraints, that is, limit price variations on sectorial
indices. They would translate into more general inequalities relating weighted sums of
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primitive commodity prices. For simplicity of exposition, we do not consider these con-
straints in this paper, but our results still apply.

The value of the utility functions of the buyers and sellers after trading are

Ub(i,b)= (β(i,b)− pi
)
zb(i,b),

Us(i,s)= (σ(i,s)− pi
)
zs(i,s).

(2.5)

The limit price constraints are, for all buyers and sellers,

zb(i,b)
(
pbi −β(i,b)

)≤ 0,

zs(i,s)
(
psi − σ(i,s)

)≤ 0.
(2.6)

The limit quantity constraints are, for all buyers and sellers,

0≤ zb(i,b)≤ qb(i,b),

0≤−zs(i,s)≤ qs(i,s).
(2.7)

The market clearing equations express the fact that combination orders can be
matched against orders for primitive commodities

A




Nb(1)∑
b=1

zb(1,b) +
Ns(1)∑
s=1

zs(1,s)

...
Nb(n)∑
b=1

zb(n,b) +
Ns(n)∑
s=1

zs(n,s)



= 0. (2.8)

2.2. Highest level of trade aggregation. We aggregate demand and supply into twoRn→
Nn functions: the aggregate demand Fb and the aggregate supply Fs. For each commodity
i, we have

Fb
i

(
yi
)= Nb(i)∑

b=1

qb(i,b)1
[
β(i,b)≥ yi

]
,

Fs
i

(
yi
)= Ns(i)∑

s=1

qs(i,s)1
[
σ(i,s)≤ yi

]
,

(2.9)

where 1[A] takes value 0 when A is false and 1 when A is true. We define [y−i , y+
i ] as

the smallest interval that contains all buy and sell limit orders for commodity i and Y as
the Cartesian product of these intervals (restricted to integers). In a similar fashion, we
aggregate the allocation into two Zn →Nn functions: the aggregate buy quantity f b and
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the aggregate sell quantity f s. For each commodity i, we have

f bi
(
yi
)= Nb(i)∑

b=1

zb(i,b)1
[
β(i,b)≥ yi

]
,

f si
(
yi
)=−Ns(i)∑

s=1

zs(i,s)1
[
σ(i,s)≤ yi

]
.

(2.10)

In order to simplify notation, we also define the allocated quantity for all traders that
have the same limit price yi:

∆ f bi
(
yi
)= f bi

(
yi
)− f bi

(
yi + 1

)
,

∆ f si
(
yi
)= f si

(
yi
)− f si

(
yi− 1

)
.

(2.11)

The objective of the auctioneer is to maximize the utilitarian social welfare functional,
that is, the surplus or sum of profits of all traders. The decision variables of the auctioneer
are the buy/sell quantities f b(y), f s(y), the real-valued clearing prices p, pb, ps, and the
price offset ∆p defined as

∆p = pb− ps. (2.12)

The CTPC problem consists therefore of

max
p,pb ,ps,∆p≥0
f b(y), f s(y)

∑
y∈Y

∆ f b(y)(y− p) +∆ f s(y)(p− y),

0≤ f b(y)≤ Fb(y), y ∈ Y ,

0≤ f s(y)≤ Fs(y), y ∈ Y ,

∆ f bi
(
yi
)(
pbi − yi

)≤ 0, y ∈ Y , i= 1···n,

∆ f si
(
yi
)(
yi− psi

)≤ 0, y ∈ Y , i= 1···n,

A
(
f b
(
pb
)− f s

(
ps
))= 0,

(2.13)

under (2.2), (2.3), and (2.12).

3. First reverse convex program (RCP1)

The transformation of CTPC into a reverse convex program is done in two steps. We first
prove, like in [10, Theorem 1] for CT, that the solution set of CTPC is identical to the
solution set of a simpler, aggregated problem, which we call the MBPC problem. We then
approximate MBPC by a reverse convex program RCP1.
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3.1. Equivalence of CTPC and MBPC. The MBPC problem consists of determining real-
valued clearing prices p, pb, ps and buy and sell allocation vectors f b, f s ∈Rn such that

max
p,pb ,ps,∆p≥0

f b , f s

n∑
i=1

f bi
([
pbi
]

+ 1− pbi
)

+
∫∞

[pbi ]+1

dFb
i

dyi
|yi
(
pi− yi

)
dyi

+ f si
(
psi −

[
psi
])

+
∫ [psi ]−1

−∞
dFs

i

dyi
|yi
(
pi− yi

)
dyi,

(3.1)

Fb
(
pb + e

)≤ f b ≤ Fb
(
pb
)
, (3.2)

Fs
(
ps− e

)≤ f s ≤ Fs
(
ps
)
, (3.3)

A
(
f b− f s

)= 0, (3.4)

p =
[
pB pBAN

]
, (3.5)

under (2.2), (2.3), and (2.12). Here, e is the vector of ones, and integrals are Stieltjes
integrals.

Theorem 3.1. A necessary and sufficient condition for p, pb, ps, f b, f s to solve CTPC is
that p, pb, ps, f b(pb), f s(ps) solve MBPC.

Proof. The proof parallels closely the proof of [10, Theorem 1]. The only difficult part is
to prove price consistency, that is, (3.5). We introduce a different formulation of CTPC,
which we call CTPC at the lowest level of trade aggregation; the variables of interest at this
level are the trades themselves, that is, the assignments between each trader. This model
is a linear program without clearing prices but with a “social dictator.” Since maximizing
the social welfare functional yields a Pareto-efficient solution, we can invoke the second
theorem of welfare economics to show that the optimal allocations are the same at all
levels of trade aggregation of CTPC, that is, there exists a clearing price at which all traders
agree to transact, and which gives them nonnegative profit.

We decompose all trades into “normal deals,” which involve only one buyer and one
seller of the same commodity, and “combination deals,” which involve at most one dealer
in every commodity, and at least two dealers in different commodities. Normal deals are
indexed by the commodity, buyer, and seller (i,b,s), and combination deals are indexed
by commodity weight w and dealer group d, which we define hereafter.

The set W is the set of all vectors w = [wb ws]∈N2n such that A(wb−ws)=wbws =
0, and no vector wk is the multiple of another vector wl. In other words, w represents the
weight of each commodity in a particular type of combination deals. The set Db

i,b is the

set of all possible dealer groups d = [db ds] that take part in a particular deal involving
ith commodity buyer b. For instance, dbj = 2 means that the second buyer of commodity
j is part of the dealer group d.

Suppose that we solve CTPC. Given the optimal allocations of normal deals and com-
bination deals x̄N (i,b,s) and x̄C(w,d), we can determine all buyers and sellers who do not
trade, and formally remove them from the original problem. Likewise, we remove from
the sets W , D the weights and dealer groups that have zero x̄C(w,d). For a reason that
will become more clear later, we also formally reduce the limit quantities qb, qs of the
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traders that are only partially matched at the optimum, by an amount which makes the
optimal solution a full match for every trader. Finally, the exchange formally takes a profit
per quantity equal to ∆p(i)/2 from each buyer and seller, and for each deal. Note that the
optimal allocation x̄N , x̄C does not change. At the lowest level of trade aggregation, CTPC
becomes then

max
xN ,xC≥0

γNxN + γCxC, (3.6)

Ns(i)∑
s=1

xN (i,b,s) +
∑
w∈W

wb
i

∑
d∈Db

i,b

xC(w,d)≤ qb(i,b) ∀i,b, (3.7)

Nb(i)∑
b=1

xN (i,b,s) +
∑
w∈W

ws
i

∑
d∈Ds

i,s

xC(w,d)≤ qs(i,s) ∀i,s. (3.8)

Note that the left-hand side of (3.7) is nothing else than the buy allocation zb(i,b).
Each deal brings the following profit per quantity:

γN (i,b,s)= β(i,b)− σ(i,s)−∆p(i),

γC(w,d)=
n∑
i=1

wb(i)

(
β
(
i,dbi

)− ∆p(i)
2

)
−ws(i)

(
σ
(
i,dsi

)− ∆p(i)
2

)
.

(3.9)

The dual of (CTPC) is

min
u,v≥0

qbu+ qsv,

u(i,b) + v(i,s)≥ γN (i,b,s) ∀i,b,s,
n∑
i=1

wb
i u
(
i,dbi

)
+ws

i v
(
i,dsi

)≥ γC(w,d) ∀w,d.

(3.10)

By complementary slackness, the optimal ū, v̄ satisfy, for all i, b, s, w, d of the problem,

ū(i,b) + v̄(i,s)= β(i,b)− σ(i,s)−∆p(i), (3.11)
n∑
i=1

wb
i ū
(
i,dbi

)
+ws

i v̄
(
i,dsi

)= n∑
i=1

wb
i

(
β
(
i,dbi

)− ∆p(i)
2

)
−ws

i

(
σ
(
i,dsi

)
+
∆p(i)

2

)
. (3.12)

By the strong duality theorem of linear programming, the optimal value of the objec-
tive of the primal is equal to the optimal value of the objective of the dual. With this in
mind, we identify, as in [11], ū(i,b) as the optimal profit per share of buyer i. As men-
tioned earlier, there exists a clearing price p at which traders can transact for the same
profit as with the “social dictator.” Therefore, this price is such that

p(i)= β(i,b)− ∆p(i)
2

− ū(i,b)= σ(i,s) +
∆p(i)

2
+ v̄(i,s). (3.13)
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As a consequence,

ū(i,b)= β(i,b)− p(i)− ∆p(i)
2

, (3.14)

v̄(i,s)= p(i)− ∆p(i)
2

− σ(i,s). (3.15)

Inserting (3.14) and (3.15) into (3.12) yields

(
wb−ws

)
p = 0. (3.16)

We define a new vector t = wb −ws. We decompose t, p into tB, pB for primitive in-
struments and tN , pN for combinations. We have therefore, for all t,

pBtB + pNtN = 0, tB +ANtN = 0. (3.17)

Therefore p = pBA solves CTPC. Inequalities (3.2) and (3.3) are easily obtained from
the first-order conditions of CTPC, as in [9]. Also it is easy [10] to see why buyers (sellers)
with a limit price strictly greater than (smaller than) the buy (sell) clearing price are al-
located their entire limit quantity, justifying the appearance of demand/supply functions
in the objective. The necessity of the condition can be proved similarly. �

3.2. Continuous approximation of MBPC into RCP1. Our heuristic works on continu-
ous demand/supply functions Fb, Fs by continuous ones F̄b, F̄s over Y . Of course, there
are many approximation methods, such as minimizing the square of the difference be-
tween the discrete and continuous functions, but simpler schemes, such as the one de-
scribed in [10] work as well. In the sequel of the text, we take our continuous functions
to be piecewise linear. We then extend these functions to make them strictly decreasing
over the “solution” interval [ai p−i ,ai p+

i ], where p−, p+ are the maximal elements of the
minimal rectangular box that contains the following set:

YB =
{ n⋃

i=1

{
pB|ai pB ∈ Y

} n⋂
j=1

{
pB|aj pB ∈ Y

}}⋃{
pB|απ ≤ pB ≤ π

α

}
. (3.18)

The extension is linear, with the following end values. If aj p−i < y−i , then

F̄b
i

(
aj p−i

)= F̄b
i

(
y−i
)
, F̄s

i

(
aj p−i

)=−δ. (3.19)

If aj p+
i > y+

i , then

F̄b
i

(
aj p+

i

)=−δ, F̄s
i

(
aj p+

i

)= F̄s
i

(
y+
i

)
+ δ. (3.20)

The number δ is the smallest positive number that preserves the stability of the re-
verse convex algorithm. After this laborious but conceptually simple step, we can move to
the definition of the continuous version of MBPC. It consists of determining a primitive
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commodity sell price ps,B and a vector ∆pB such that

max
ps,B ,∆pB

n∑
i=1

∫∞
ai(ps,B+∆pB)

dF̄b
i

dyi
|yi
[
ai
(
ps,B +

∆pB

2

)
− yi

]
dyi

+
∫ ai ps,B

−∞
dF̄s

i

dyi
|yi
[
ai
(
ps,B +

∆pB

2

)
− yi

]
dyi,

(3.21)

F̄b,B(ps,B +∆pB
)− F̄s,B(ps,B)+ANF̄S

(
ps,BAN

)= 0, (3.22)

απB ≤ ps,B ≤ πB

α
. (3.23)

Note that this formulation is also more economical than the one in the previous sec-
tion, in the sense that we eliminated the price variables that have an obvious dependency
on ps,B, ∆pB. Since by construction, π = [πB πBAN ] and ∆p = [∆pB ∆pBAN ], the sell
price is also consistent, that is,

ps = p− ∆p

2
=
[
ps,B ps,BAN

]
, (3.24)

and the constraints (3.23) imply

απ ≤ ps ≤ π

α
. (3.25)

We need one more manipulation to transform this problem into a reverse convex
problem. We can invert (3.22) over the solution domain

∆pB =−ps,B + F̄b,B−1(
F̄s,B(ps,B)−AN

(
ps,BAN

))≡ ν
(
ps,B

)
. (3.26)

We can then substitute ∆pB in the objective by ν(ps,B), and the continuous version
of MBPC has now only linear constraints, with a reverse convex objective. Note that the
objective is not expensive to compute. The first step (which is to be performed only once)
would be to tabulate the surplus for every pair (limit price, price offset), and interpolate it
by a quadratic function in between since the demand/supply functions are linear. Namely,
the tabulated surplus for demand is

Sbi
(
pi,∆pi

)≡
∫∞
pi+(∆pi/2)

dF̄b

dyi
|yi
(
pi− yi

)
dyi. (3.27)

The algorithm needs to compute surplus as a function of another variable, namely,
ps,B, so we define

Tb
i

(
ps,B

)=
∫∞
ai(ps,B+ν(ps,B))

dF̄b

dyi
|yi
[
ai
(
ps,B +

ν
(
ps,B

)
2

)
− yi

]
dyi. (3.28)
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Of course, we define the same surplus functions for the supply surplus. The lookup
function would then perform the series of easy computations:

ps,B −→
{
pi = ai

(
ps,B + ν

(
ps,B

))
∆pi = aiν

(
ps,B

)
}
−→ Sbi

(
pi,∆pi

)−→ Tb
i

(
ps,B

)
. (3.29)

To summarize, the reverse convex program RCP1 consists of

max
ps,B

n∑
i=1

Tb
i

(
ps,B

)
+Ts

i

(
ps,B

)
, απ ≤ ps,B ≤ π

α
. (3.30)

The constraints in these problems are quite simple, and the feasible domain is just a
rectangular box. As noted before, an exchange institution could implement more com-
plicated price constraints. In the presence of sectorial price constraints for instance, the
feasible domain becomes a general polytope.

4. Second reverse convex program

The main idea of this paper was to use the solution of RCP1 to build an initial approxi-
mation of the solution of the problem MBPC. Then, we could solve CTPC at the lowest
level of aggregation by linear programing. An alternate route, which we elaborate upon
in this section, is to solve a series of reverse convex programs RCP2, starting from the
solution of RCP1, and converging to the solution of MBPC.

We formulate inequalities (3.2) and (3.3) of MBPC slightly differently, for better pre-
sentation. We define modified demand, supply functions Fb′ and Fs′ and demand, supply
elasticity functions Db, Ds with diagonal matrix range such that f b, f s respects (3.2) and
(3.3) if and only there exists τB, τS (with components between 0 and 1) such that

f b = Fb′(AT
(
ps,B +∆pB

))
+Db

(
AT
(
ps,B +∆pB

))
τB, (4.1)

f s = Fs′(AT ps,B
)

+Ds
(
AT ps,B

)
τS. (4.2)

A possible solution is exposed in [10, Lemma 1]. We define RCP2, which is parame-
terized by (ps,B,∆pB):

max
ps,B

′
,∆pB

′≥0
f b
′
, f s

′
,τb

′
,τs
′

ν
(
f b

′
, f s

′
, ps,B

′
,∆pB

′)
, (4.3)

f b
′ ≤AT

(− ps,B
′
+ ps,B −∆pB

′
+∆pB

)
+Fb′(AT

(
ps,B +∆pB

))
+Db

(
AT
(
ps,B +∆pB

))
τb,

(4.4)

f s
′ ≤AT

(
ps,B

′ − ps,B
)

+Fs′(AT ps,B
)

+Ds
(
AT ps,B

)
τs, (4.5)

A
(
f b

′ − f s
′)= 0, (4.6)

0≤ τb
′ ≤ e, (4.7)

0≤ τs
′ ≤ e, (4.8)

απB ≤ ps,B
′ ≤ πB

α
, (4.9)
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where ν is total surplus. It can of course be decomposed into the surplus coming from
each demand/supply, that is,

ν=
n∑
i=1

νbi + νsi . (4.10)

The individual supply surplus is equal to

νsi
(
f si , ps,B,∆pB

)=
∫ [ai ps,B]

−∞
dFs

i

dyi
|yi
[
ai
(
ps,B +

∆pB

2

)
− yi

]
dyi + f si

(
ai ps,B − [ai ps,B])

(4.11)

if f si < Fs
i (a

i ps,B). Otherwise it is equal to

νsi
(
f si , ps,B, ∆pB

)= νsi
(
Fs
i

(
ai ps,B

)
, ps,B, ∆pB

)
. (4.12)

The individual demand surplus is defined similarly. Observe that the objective is iden-
tical to the objective of MBPC.

We then formally construct a multifunction �, whose value is the set of sell clearing
prices and price offsets that are part of the solution of RCP2. The argument and range
of � are therefore defined on the Cartesian product of YB and the minimal optimal set
of ∆pB (which is also easy to calculate, but not useful in practice). As we show in the
next theorem, a fixed point of � is a solution of MBPC. To determine this fixed point,
several algorithms can be used. For definiteness, we focus on the Eaves-Saigal algorithm
(for more details, see [2, 9]).

The following theorem proves the convergence of the method. Note that, for conver-
gence, the Eaves-Saigal algorithm does not need to find an exact fixed point, but the proof
becomes shorter.

Theorem 4.1. All fixed points (ps,B,∆pB) of � are solutions of MBPC.

Proof. The proof parallels closely the proof of [10, Theorem 3]. Let λB, λS, µ, ηb, ηs be
the multipliers of relations (4.4) to (4.8). Note that there are two positive multipliers for
(4.7), but one has to be zero when the other one is nonzero. We can therefore replace
them by a multiplier ηb unrestricted in sign. The same holds true for ηs. The necessary
optimality (Kuhn-Tucker) conditions at a fixed point imply that




λb

λs

µ
ηb

ηs


=




∂ν

∂ f b′

∂ν

∂ f s′

0
Db(·)∂ν

∂ f b′

Ds(·)∂ν

∂ f s′




. (4.13)
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By construction of the surplus, a zero value of ∂ν/∂ f s
′

i implies that f si = Fs
i (a

i ps,B). In
the other case, we have λsi > 0. One of the complementary slackness conditions reads

λsi
(
f si −Fs

i

(
ai ps,B

)−Ds
ii

(
ai ps,B

)
τsi
)= 0. (4.14)

Therefore (4.5) is also respected, and similarly for (4.4). At a fixed point, the con-
straints of RCP2 are therefore the same as the constraints of MBPC, and so is the objec-
tive. �

5. Algorithm

In this section, we assemble the material developed in the previous sections to describe
an algorithm to solve CTPC.

(1) Transform CTPC into MBPC, and then into RCP1.
(2) Find the solution ps,B of RCP1.
(3) Calculate ∆pB = ν(ps,B).
(4) Given ps,B, ∆pB, use the Eaves-Saigal algorithm to calculate a fixed point of �, by

solving a sequence of RPC2.

A fixed point of � is, by Theorem 4.1, a solution of MBPC and also, by Theorem 3.1,
a solution of CTPC.

5.1. Rough estimation of complexity. So far, we have not mentioned what algorithm
should be used to solve RCP1 or RCP2. There is now a collection of good algorithms to
solve reverse convex programs. Tui [12] came up with a cutting plane algorithm. Hillestad
[4, 5] showed that this algorithm may not converge, and advocated a different approach,
namely, exploring all the edges of the polytope consisting of all the linear constraints, to
look for the (at most) unique intersection of each edge with the reverse convex constraint
via a one-dimensional search. Gurlitz and Jacobsen [3] combined both methods. Moshir-
vaziri and Amouzegar [7] developed a subdivision scheme within the same approach.
Edge-searching methods are at worst exponential like the simplex method, because they
need at worst to explore all edges. Unfortunately, there seems to be no consensus, as is the
case for the simplex, for the average number of edges to be searched in edge-searching
methods. The numerical evidence showed in Jacobsen and Moshirvaziri in [6], with a
slightly different edge-search method than Hillestad, suggests that these algorithms are
still much slower than the simplex algorithm applied to a similar-size linear program.
Nevertheless, this is a rich domain of research and there may be a day when the average
number of edges to be searched in a reverse convex algorithm may approach the number
of constraints of the problem, as is the case for the number of pivoting operations in the
simplex algorithm.

Based on this very crude and optimistic assumption, we develop some formulas for the
complexity of our approach, which we compare to the plain linear programming (PLP)
approach of solving CTPC at the lowest level of aggregation.

In this section, we let p be the average number of orders per combination, and q the
length of the edge of the smallest cube that contains all limit prices for all commodities.
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Solving CTPC by PLP means solving a linear program with n rows and npm columns
(in the worst case where no coefficient Aij is equal to zero). The average number of itera-
tions of the primal simplex method (see [1]) is known to be proportional to the number
of rows of the simplex matrix. Since pivoting requires a number of operations equal to the
number of elements of the simplex matrix, the PLP method requires an average number
of operations TPLP equivalent to

TPLP =O
(
n3pm

)
. (5.1)

In our approach, which we call the MBPC approach, steps (2) and (4) are the most
computer-intensive. RCP1 has 2m inequalities and m variables. Using our optimistic as-
sumption, solving RCP1 in step (2) requiresO(2m(4m2 + logq)) operations; the first term
corresponds to the calculation of the vertex, and in the second term, 1/q is very roughly
equal to the relative error decrease between the first and the final iterations of the Newton-
Raphson method used to search along the edge. The final error of the reverse constraint
corresponds to a price error of less than one unit. We believe this tolerance is satisfactory.

In step (4), RCP2 has 6n + m rows and 4n + 2m variables. By the same argument
as before, solving each instance of RCP2 requires approximately O([6n + m][(6n + m)
(4n+ 2m) + logq]) operations. As showed in [10], RCP2 needs to be solved on average
2m times within the Eaves-Saigal algorithm. Every time RCP2 is solved, a system of 2m
equations with 2m unknowns needs to be solved, which requires at worst O(16m4) op-
erations. To summarize, the MBPC approach requires an average number of operations
TMBPC equivalent to

TMBPC =O
(
2m
(
4m2 + logq

)
+ 2m

(
16m4 + (6n+m)

[
(6n+m)(4n+ 2m) + logq

]))
.

(5.2)

We did not test our algorithm on substantial examples. Nevertheless, we conducted
(see [10]) similar tests for CT, which demonstrated the superiority of such an approach
over the PLP approach, again in the case without price constraints. Of course, to solve CT
the equivalent of RCP2 was a linear program, which is much faster to solve than a reverse
convex program.

6. Conclusion

We described various problem reduction techniques to efficiently solve a particular type
of combinatorial auctions by reverse convex programming. Large combinatorial auctions
can be extremely difficult to solve with conventional linear programming. For medium-
sized auctions, it might be more advantageous within the framework presented in the
previous section to mix reverse convex programming (for step (2)) with linear program-
ming (for step (4)) since step (2) is faster than step (4). Indeed, we solve in step (4) a
collection of reverse convex programs as opposed to only one in step (2).

In this article, we relaxed a constraint which is common in practice, namely, the in-
tegrality of allocations. In the same way that branch-and-bound techniques in integer
programming take advantage of various LP relaxations, we could combine branch-and-
bound with the techniques described in this paper.
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