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Abstract. We derive optimality conditions and calculate approximate solu-

tions to the problem of determining the optimal speed of mean reversion to be

applied to a Gaussian state variable. The optimality criterion is the minimiza-

tion of the variance of the Radon-Nikodym derivative of the measure ”with

mean-reversion” with respect to the measure ”without mean-reversion” under

constraints. We show that we can increase the speed of performing resimula-

tion and sensitivity analysis in a Monte Carlo simulation. We apply our results

to the pricing of real options and the pricing of interest-rate derivatives in the

BGM/Libor model of interest rates.
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1. Introduction

We examine the problem of characterizing a ”target”, or "final" Gaussian prob-

ability measure by doing an optimal change of measure from an ”initial” (completely

characterized) Gaussian probability measure. In Monte Carlo simulation, it is often

useful to resimulate the model using a different (final) probability measure when the

integrand is expensive to compute. We thus advocate, rather than performing two

independent simulations, to use the so-called change of measure (CM) resimulation

scheme, whereby we calculate (scenario by scenario) the integrand only once in the

initial measure and then multiply it by the Radon-Nikodym derivative of the final

measure w.r.t. the initial measure to obtain the expected value of the integrand in

the final measure.

This problem has several applications in computational finance, in both com-

plete and incomplete markets. The traditional approach to calibrate option pricing

models is to estimate a ”physical”, or ”actual” measure by time-series analysis (see

for instance Chan et al (1992) in the case of interest rate models), and then cali-

brate the market price of risk in such a way that (discounted) traded instruments

are martingales in the risk-neutral measure; in this context, the initial measure is

the physical measure, and the final measure is the risk-neutral measure. This paper

also describes an application to the converse problem, where the initial measure is

the risk-neutral measure, and the final measure is the physical measure; this prob-

lem has been less discussed in the literature, but is nevertheless quite important in

practice. In incomplete markets, there are not enough traded instruments to fully

determine a final (risk-neutral) measure, therefore a final measure is often defined
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by changing optimally the initial (physical) measure or, viewed differently, by se-

lecting an ”optimal” measure from a class of probability measures (see e.g. Rouge

and El Karaoui (2000) or Schweitzer (1996)).

We restrict out attention to probability measures where the state variable is a

Gaussian diffusion, namely an Ornstein-Uhlenbeck process or an arithmetic Brown-

ian motion, because their analytical tractability makes them quite important in

practice. The final measure is the solution of an optimization problem, whereby

the variance of the Radon-Nikodym derivative of the final measure with respect

to the initial measure is minimized subject to constraints on some characteristics

of the final measure. It is well-known that a Gaussian process if fully determined

by its mean and autocovariance functions. Thus, our stylized analysis will focus

on two different constraints: a constraint on the variance of the state variable at

a terminal time, and a constraint on the (time-)average variance of the state vari-

able. In our application section, we describe a case where the state variable in the

final measure should have a lower variance than in the initial measure; as a result,

the overall speed of mean-reversion should be higher in the final measure than in

the initial measure; our methodology suggests the optimal shape of the speed of

mean-reversion curve. The objective chosen, the minimization of the variance of

the Radon-Nikodym derivative, is important in Monte Carlo simulation.

Our main contributions are the following. We first show that the variance of the

Radon-Nikodym derivative is the exponential of the time-integral of the solution of

an ordinary differential equation, thereby making our optimal control problem de-

terministic. We then explore the properties of this optimal control problem subject
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to (i) a constraint on the average variance of the state variable in the final measure

and (ii) a constraint on the terminal variance, and propose an approximation.

In the second part of our paper, we present two applications of our methodology

to finance.

The first application is Monte Carlo resimulation of a real option model. In real

options, the physical process is not traded, and its drift in the risk-neutral measure

depends on the market price of risk. The initial measure is the physical measure,

and the terminal measure is the risk-neutral measure.

The second application is Monte Carlo resimulation of the BGM/Libor model.

In that problem the initial measure is the rolling forward measure, and the final

measure is the physical measure. It is well-known that the calibration of the BGM

model to caps and swaptions results in an implausibly high dispersion of interest

rates (see e.g., Rebonato (1999)), while information is lacking to determine the

variance of interest rates at all times in the physical measure. The constraint on

the variance of interest rates in the physical measure (which has to be equal to

the estimated value obtained from time-series analysis) and the minimization of

the Radon-Nikodym derivative complete the determination of the optimal drift of

interest rates in the physical measure. For this particular application, we compare

our methodology with perhaps the simplest benchmark, namely selecting a constant

speed of mean-reversion, and observe a significant albeit not drastic improvement.

We did not compare our methodology to other methodologies for two reasons. The

first one is that calculations become much more intensive: for more general changes

of measure one needs to solve backward stochastic differential equations (see, e.g.,

Schweizer (1996)) instead of ordinary ones; besides, the variance can be calculated
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only via simulation. Second, the resulting process (in the final measure) may have

some undesirable properties that are hard to detect, as opposed to the simplicity

of a Gaussian process.

2. Theory

Notation: The complete filtered probability space (Ω,F , P I) supports a Brown-

ian motion W I . We use the superscript I and F to refer to the probability mea-

sure, expectation operator, variance (V ar) operator, and Brownian motion in the

initial/final measure. When not shown otherwise, the expectation and variance

operators are taken at time zero.

The dynamics of the stochastic process y of interest are:

y(t) = x(t) + α(t)(2.1)

dx(t) = σ(t)dW I(t)(2.2)

x(0) = 0(2.3)

where α and σ are deterministic functions of time. For simplicity, we choose x

to be our state variable: we note that the average/terminal variance of y are the

same as the ones of the variable x. Typically in finance y would be the logarithm of

an asset price (please see the application section for more specific explanations), α

its mean function (in the initial measure), and σ the volatility. In the final measure

PF the process WF is Brownian motion, where:

dWF (t) = dW I(t) +
a(t)x(t)

σ(t)
dt
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Once the speed of mean-reversion a(t) is specified, PF becomes fully specified.

We now proceed to determine an expression for the second moment of the value at

the horizon time T of the Radon-Nikodym derivative:

(2.4) g(T ) ≡ EI [dP
F

dP I
|FT ]

Lemma 1:

(2.5) EI [g2(T )] = exp[

Z T

0

σ2(t)f(t)dt]

where:

df(t)

dt
= −a

2(t)

σ2(t)
+ 4a(t)f(t)− 2σ2(t)f2(t)(2.6)

f(T ) = 0

This lemma is standard, and can be proved by Ito’s lemma. The technique

of proof is similar to the calculation of the value of a discount bond in the Cox,

Ingersoll, and Ross model (see e.g., Duffie (1996)). As Levendorksii (2004) points

out, there is no ”truly analytical” formula in that case, unless a and σ are constant.

Various expansions exist for the solution of this problem though (see, e.g., Grasselli

and Hurd (2003)).

Although both time-average variance and terminal variance constraints can

be incorporated into the same optimal control problem, it is simpler for stylized

analysis to consider both problems and optimality conditions separately. This also
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enables us, in our result section, to decompose the effect of each constraint on the

shape of the optimal control.

2.1. Average Variance Constraint (AVC) Problem. The AVC problem

consists of selecting a so that, for a fixed constant A (the average variance times

the horizon):

min
a
EI [g2(T )](2.7)

EF [

Z T

0

x2(t)dt] ≤ A(2.8)

dx(t) = −a(t)x(t)dt+ σ(t)dWT (t)(2.9)

x(0) = 0(2.10)

THEOREM 1 A necessary condition for a to solve the AVC problem is to

set:

(2.11) a = σ2[2f − zv
y
]

where, for some value of λ ≥ 0, the functions f, z, y, v solve the following

boundary value problem:
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Z T

0

v(t)dt ≤ A(2.12)

df

dt
= −a

2

σ2
+ 4af − 2σ2f2 f(T ) = 0(2.13)

dv

dt
= −2av + σ2 v(0) = 0(2.14)

dy

dt
= σ2 + 4y[σ2f − a] y(T ) = 0(2.15)

dz

dt
= λ+ 2az z(T ) = 0(2.16)

Proof. The control a solves (AVC) only if it minimizes the logarithm of

EI [g2(T )] under the same constraints. We define:

v(t) = EF [

Z t

0

x2(u)du]

The Lagrange dual of the (AVC) problem is:

max
λ≥0

L(λ)(2.17)

L(λ) = min
a

Z T

0

σ2(t)f(t) + λ

Z T

0

v(t)dt(2.18)

df

dt
= −a

2

σ2
+ 4af − 2σ2f2 f(T ) = 0(2.19)

dv

dt
= −2av + σ2 v(0) = 0(2.20)

A necessary condition for a to solve the primal problem is that (λ, a) solve the

Lagrange dual. A weaker condition is that a solves the inner minimization problem

for a value of λ which is such that (2.8) holds. The inner minimization problem is

then:

max
a

Z T

0

−σ2(t)f(t)− λv(t)dt
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under (2.19) and (2.20). The Hamiltonian is:

(2.21) H = −σ2f − λv + y(−a
σ

2
+ 4af − 2σ2f2) + z(−2av+ σ2)

Conditions (2.11), (2.13) to (2.16) follow from Pontryagin’s maximum principle.

¤

The advantage of this formulation is to replace a complicated stochastic control

problem by a system of ordinary differential equations. Unfortunately the condi-

tions of the theorem are not sufficient for a minimum: indeed the Hessian of the

Hamiltonian is neither positive-definite nor negative-definite so the sufficient con-

ditions of Mangasarian (1966) do not apply. Numerically, one is then reduced to

searching all possible local minima. Since 3 terminal conditions are supplied versus

only 1 initial condition, it may then appear superior to solve the boundary problem

(2.11), (2.13) to (2.16) by the shooting method going backward, and then vary the

free parameter v(T ) until the initial condition v(0) = 0 is met. Unfortunately, the

initial value of the control a(T ) is then undefined, and all the approximations we

used to fix this problem turned out to yield suboptimal solutions.

We decided instead to simplify the problem, that is, to reduce our "high-order"

system into a "low-order"system. For a lucid exposition of these concepts, as well

as an exposition of a different approximating procedure in optimal control we refer

the reader to Sannutti (1968). Suppose that σ2 = O(ε2). More specifically, we set

σ(t) = εσ1(t) + ....

We do an asymptotic expansion of all the unknown functions:
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a(t) = a0(t) + εa1(t) + ..

f(t) = f0(t) + εf1(t) + ..

v(t) = v0(t) + εv1(t) + ..

where each of the terms is O(1). We try the solution a0(t) = 0, v0(t) = v1(t) =

0, y0(t) = y1(t) = 0. Separating the terms O(1) and O(ε), we obtain:

df0
dt

= −a
2
1

σ21
(2.22)

df1
dt

= 4a1f0(2.23)

dv2
dt

= σ21(2.24)

The solution of equations (2.22) to (2.24) is clearly O(1). We then calculate a

first-order approximation of EI [g2(T )]:

lnEI [g2(T )] = ε2
Z T

0

σ21(t)f0(t)dt+O(ε
3)

= ε2[

Z t

0

σ21(u)duf0(t)]|T0 − ε2
Z T

0

Z t

0

σ2(u)du
df0
dt
|tdt+O(ε3)

= ε2
Z T

0

R t
0 σ

2(u)du

σ2(t)
a21(t)dt +O(ε

3)(2.25)

where (2.25) follows from the boundary condition f0(T ) = 0, inherited from

the boundary condition of (2.19). So far, we do not know the order of λ, so that
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we keep in our "low order formulation" the full dynamics of v. We now define the

approximated Lagrangian:

(2.26) Lapp(λ) = min
a
lnEI [g2app(T )] + λ

Z T

0

v(t)dt

where:

(2.27) lnEI [g2app(T )] =

Z T

0

R t
0
σ2(u)du

σ2(t)
a2(t)dt

The approximated control problem consists then of (2.26), under (2.27) and

(2.14). The Hamiltonian of the approximated problem becomes then:

Happ(v(t), a(t), t) =
− R t

0
σ2(u)du

σ2(t)
a2(t)− λv(t) + z(t)(−2a(t)v(t) + σ2(t))

The optimal control of the approximated problem is:

(2.28) a(t) =
−σ2(t)z(t)v(t)R t

0 σ
2(u)du

where v and z follow as before (2.14) and (2.16). An advantage of this formula-

tion is that the approximated Hamiltonian is concave in v and t, and the Pontryagin

optimality conditions are then sufficient.

We summarize our findings in an algorithm to calculate the optimal speed of

mean-reversion. It uses a simple Euler scheme with time step ∆t (a divisor of T )

combined with the shooting method.
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Algorithm AVC

Set λ = a(0) = v(0) = 0

Repeat

z(0) = 0

Repeat

For t =∆t, .., T

v(t) = v(t−∆t)(1− 2a(t−∆t)∆t) + σ2(t)∆t

z(t) = z(t −∆t)(1+ 2a(t −∆t)∆t) + λ∆t

a(t) =
−σ2(t)z(t)v(t)PT/∆t
i=0 σ2(i∆t)∆t

Next t

Decrease z(0) by some amount ∆z(0)

Until z(T ) sufficiently close to zero

Increase λ by some amount ∆λ

Until
PT/∆t

i=0 v(i∆t)∆t sufficiently close to A

The Lagrange multiplier, λ represents the trade-off between a small variance

of g(T ) and a small average variance of x. The higher λ the smaller the average

variance of x (relatively to the variance of g(T )). In the case that interests us

(namely where the average variance of x is higher than A for a null speed of mean

reversion), λ is always positive. As a result z is negative, so that a and v are

positive. Is this scheme able to reduce the average variance of x to any positive

number? Clearly, the control:
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(2.29) a(t) =
σ2(t)

2v(t)

results in a null variance of x at all times, but also in an infinite variance of g(T ).

Practically, for strictly positive final average variance of x the experimental answer

seems to be negative. We cannot tell whether this is due to our approximation of

the variance formula or to some intrinsic feature of the problem.

2.2. Terminal Variance Constraint (TVC) Problem. The TVC problem

consists of selecting a so that, for a fixed constant M (the terminal variance times

the horizon):

min
a
EI [g2(T )](2.30)

EF [x2(T )dt] = M(2.31)

dx(t) = −a(t)x(t)dt+ σ(t)dWT (t)(2.32)

x(0) = 0(2.33)

The analog of theorem 1 follows.

THEOREM 2 A necessary condition for a to solve the TVC problem is to

set:

(2.34) a = 2σ2[f − z
y
v]
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where, for some value of zT , the functions f, z, y, v solve the following boundary

value problem:

df

dt
= −a

2

σ2
+ 4af − 2f2σ2 f(T ) = 0(2.35)

dv

dt
= −2av + σ2 v(T ) =M(2.36)

dy

dt
= σ2 + 4y[σ2f − a] y(T ) = 0(2.37)

dz

dt
= 2az z(T ) = zT(2.38)

Solving the TVC problem is easier than solving the AVC problem because the

Lagrange multiplier λ disappears. However, the equations are badly-conditioned,

in the sense that both z and y increase quite fast with time, which results quickly in

numerical errors when calculating (2.34). We resorted to the same approximation

as before, i.e., using (2.27), which results in the same suboptimal control (2.28).

Algorithm TVC

Choose ∆zT and ∆z(0) so that ∆zT >∆z(0)

Set a(0) = v(0) = zT = 0

Repeat

z(0) = 0

Repeat

For t =∆t, .., T
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v(t) = v(t−∆t)(1− 2a(t−∆t)∆t) + σ2(t)∆t

z(t) = z(t −∆t)(1+ 2a(t −∆t)∆t)

a(t) =
−σ2(t)z(t)v(t)PT/∆t
i=0 σ2(i∆t)∆t

Next t

Decrease z(0) by some amount ∆z(0)

Until z(T ) sufficiently close to zT

Decrease zT by some amount ∆zT

Until v(T ) sufficiently close to M .

.

3. Results

3.1. Average Variance Constraint Problem. We define the relative av-

erage variance of x(T ) (in the final measure) as the ratio of A divided by the

cumulated variance that we would obtain if a = 0 ( that is,
R T
0

R u
0
σ2(u)dudt). We

report in figures 2 and 3, as a function of the relative average variance of x(T )

the value of V arI [g(T )] for our suboptimal control obtained from the algorithm

(AVC) with ∆t = 0.01. In figure 2 volatility is constant, while in figure 3 volatility

is time-dependent. Note that, for relevance we report the "true" variance of g(T )

and not the approximation (i.e., the exponential of (2.27)). We also compare our

suboptimal control to the most naive control, that is, the lowest constant speed of

mean reversion such that (2.8) is met. In all cases our suboptimal control beats the

constant speed of mean reversion control. We observe in all these results that the

suboptimal control a(t) follows a slightly downward trend.
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3.2. Terminal Variance Constraint Problem. We define the relative ter-

minal variance of x(T ) (in the final measure) as the ratio of M divided by the

terminal variance that we would obtain if a = 0, that is
R T
0
σ2(t)dt. We report in

figures 4 and 5, as a function of the relative terminal variance of x(T ) the value

of V arI [g(T )] for our suboptimal control obtained from the algorithm (TVC) with

∆t = 0.01. In figure 4 volatility is constant, while in figure 5 volatility is time-

dependent. As before, we report the "true" variance of g(T ) and not the approxi-

mation (i.e., the exponential of (2.27)). As before, we also compare our suboptimal

control to the control corresponding to the lowest constant speed of mean reversion

such that (2.8) is met. In all cases our suboptimal control beats the constant speed

of mean reversion control, albeit more moderately than in the average variance

case. For the terminal variance ratio and horizons chosen, the terminal variance

turns out to be not significantly lower than the maximum variance of x across its

path.

4. Application to Real Options

In this section the initial measure is the physical measure and the final measure

is the risk-neutral measure. We suppose that there are two inputs to the model:

• the underlying variable, Y which is not traded

• a European option which payoff H at time T depends only on Y (T ); the

observed market price of this claim, namely H0, is universally accepted as

being "right".

The dynamics of Y are:
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y(t) = lnY (t)− ln(Y (0)) + 1
2

Z t

0

σ2(u)du

dy(t) = µdt+ σ(t)dW I(t)

The goal is to manage a portfolio of various other contingent claims on Y . For

simplicity of exposition we assume that all cash flows occur at maturity, so that

we can write h(Y ), for this single (path-dependent) cash-flow. Observe that h is a

functional. Portfolio managers are interested, among other things, in calculating,

by Monte Carlo simulation:

• the price of the portfolio

• the distribution of h(Y ) in the physical measure.

We describe in the appendix a data model corresponding to this problem.

It is well-known (see e.g. Dixit and Pyndick (1994)) that the rate of return of

Y is not equal to the risk-free interest rate r in the risk-neutral measure. Here we

select a mean-reverting market price of risk, that is, we let:

x(t) = y(t) + µt

dx = −a(t)x(t)dt + σ(t)dWF (t)

Note that, on top of the mean-reverting component we could have added a

constant market price of risk, but this would have resulted in a more complicated

expression for EI [g2(T )] than (2.5). By assumption:

(4.1) H0 = e
−rTEI [g(T )H]
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Since Y is geometric Brownian motion, the Black-Scholes formula shows that

constraint (4.1) can be expressed as a relationship between the observed implied

volatility and the model implied volatility, namely, it can be translated into con-

straint (2.31). The TVC algorithm can then be used to determine a shape of a(t)

that best accelerates Monte Carlo resimulation, as we will show shortly. We first

show the full algorithm.

Algorithm CM Resimulation

I. Calculate the optimal a(t) using the TVC algorithm.

II. Simulate Y (ω) for each scenario ω = 1..Ω in the initial measure

III. Calculate the portfolio cash flows h(Y (ω))

IV. Calculate the empirical distribution of the cash flows h(Y (ω)) in the initial

measure

V. Calculate the Radon-Nikodym derivative g(T, ω) for each scenario ω = 1..Ω

VI. Calculate the estimator of market value VCM = 1
Ωe

−rT ΩP
ω=1

g(T, ω)h(Y (ω))

By comparison, a traditional resimulation algorithm would be:

Algorithm Traditional Resimulation

1. Calculate a constant a so that (2.31) is met with equality

2. Simulate Y (ω) for each scenario ω = 1..Ω in the initial measure

3. Calculate the portfolio cash flows h(Y (ω))

4. Calculate the empirical distribution of the cash flows h(Y (ω)) in the initial

measure

5. Simulate Y (ω0) for each scenario ω0 = 1..Ω in the final measure
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6. Calculate the estimator of market value VTRAD = 1
Ωe

−rT ΩP
ω0=1

h(Y (ω0))

The CM Resimulation algorithm should be applied only when step III is more

time-consuming than step II. We reported in an earlier paper (Schellhorn and

Kidani (2000)) that, for the pricing of large portfolios of mortgage-backed securities,

calculating the sum of the (discounted) payoffs h(Y ) can take more than 100 more

time than simulating the state variable and its Radon-Nikodym derivative g.

4.1. Selection of an Objective to Minimize. By definition,

EI [V 2CM ] = e
−2rT (EI [g2(T )]EI [h2(Y )] + CovI [g2(T ), h2(Y )])

The sign of the covariance depends on the cash flow h. For an uncorrelated

cash flow, we have:

(4.2) V arI [VCM ] = e
−2rT (EI [g2(T )]EI [h2(Y )]− EF [h(Y )]2)

It is well-known that the error in Monte Carlo simulation is proportional to

the variance of the estimator. Therefore (4.2) shows that, on average (across all

possible cash flows), minimizing EI [g2(T )] results in accelerating the calculation

time of VCM .

There is a completely different reason why minimizing the variance of g is

appealing for real option pricing, or, more generally, in incomplete markets. It is

well-known that (see e.g., Duffie and Richardson (1991), Schweizer (1996)) when not

all claims are attainable, the minimum variance martingale measure should be used
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as a pricing measure when the objective is to minimize the L2(P I) - approximation

error between the payoff of a non-attainable claim, and the value of its "best hedge".

There are however some non-trivial differences between the definition of a minimum

variance martingale measure and our definition, which makes this result delicate to

translate to our model. We decided to leave this task for future research.

We also note that entropy minimization (see e.g., Rouge and El Karoui (2001))

seems to be gaining in popularity in the incomplete market literature compared to

variance-minimzation. Roughly speaking, minimization of the entropy of a measure

corresponds to maximizing the expected value of an exponential utility function,

whereas finding the minimum variance martingale measure corresponds to maximiz-

ing the expected value of a quadratic utility function. However, unlike the variance

of (the Radon-Nikodym of) a measure, it seems difficult to relate the entropy of a

measure to the accuracy of Monte Carlo resimulation.

5. Application to the BGM/Libor Model

The BGM/Libor model is currently one of the most widely used models for the

pricing of interest rate options. In a one-factor BGM/Libor model, forward rates

Fi for a loan between period Ti and Ti+1 ≡ Ti+τ (with i = 1..m) follow the system

of SDE:

dFi
Fi

= −σi
mX

k=i+1

σkFkτ

1+ Fkτ
dt+ σidW

F(5.1)

Fi(0) = Fi,0(5.2)
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where WF is Brownian motion in the measure used for pricing, namely the

rolling forward measure. The drift term in (5.1) is in practice very small, so that

forward rates are approximately lognormal. Normality (of the logarithm of the

forward rate) is a key advantage for a successful and intuitive calibration to caps

and swaptions, as explained for instance in Rebonato (1999),(2002)). Likewise, a

joint normal distribution in the physical measure of the logarithm of forward rates

is much easier to interpret than any other more sophisticated and statistically more

correct distribution.

Although the academic literature favours to first infer the physical measure and

then adjust it with a market price of risk (see Heath et al (1992)) to obtain the

rolling forward measure, information often flows the other way round in practice.

In many bank departments the key requirement is to do a correct pricing, in the

sense that the risk-neutral pricing formula applied to caps and swaptions returns

the observed market prices. To this effect, the rolling forward measure is calibrated

first to the prices of caps and swaptions and/or historical correlations. The initial

measure is then the rolling forward measure. The final measure is then either the

physical measure (to calculate Value-at-Risk, i.e. the probability distribution of

future portfolio value), or some measure derived from either the rolling forward or

the physical measure, to perform sensitivity analysis (e.g., what happens to Value-

at-Risk when the average volatility changes by 1%, 2%, 5%).

5.1. Selection of a Constraint. Calibrating the BGM/Libor model to caps

and swaptions results in a dispersion of rates forecast, in the rolling forward mea-

sure, that is much higher than the plausible dispersion of physical rates in the US,
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because of the high skewness of the lognormal distribution. This is one of the rea-

sons why alternate models like Hull and White (1993), where rates are Gaussian

when they are large and lognormal when they are small, were designed to prevent

a too rapid increase in risk-neutral rates; while widely used, for instance at Bank of

America in the 1990s (Williams (1999)) this model is less practical to calibrate to

caps and swaptions than the BGM/Libor model. To summarize, we advocate to cal-

ibrate the rolling forward measure first, and then to derive the physical measure by

a mean reversion adjustment, such that rates will still be lognormal in the physical

measure, but with a smaller dispersion. Depending on how the ”smaller dispersion”

constraint is specified, the optimal speed of mean reversion solves either problem

(TVC), or problem (AVC), where the state variable y(t) = log(Fi(t))− log(Fi,0) for

some well-chosen forward rate Fi .

5.2. Results. Our own experience showed that a good fit is obtained to cap

prices in the US and UK when volatility takes the form:

(5.3) σ(t) = σ0(1− 0.8 exp(−2t)−mt)

This corresponds to the stylized cap curve observed in Rebonato (2002) p.

232: an initial very steep portion, a plateau area, followed by a rapid decline. For

simplicity of exposition, we suppose that all forwards have the same instantaneous

volatility, that is:

(5.4) σi(t) = σ(t)

This results in our usual model (2.2), with:
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(5.5) x(t) ∼= ln(Fi(t))− ln(Fi(0)) + 1
2

Z t

0

σ2(u)du

where the approximation comes from the fact that we ignore the drift in (5.1).

We applied the algorithm TVC to the model above, with ∆t = 0.015 and

T = 15. We calculated the optimal speed of mean-reversion for each volatility

curve, and then calculated EI [g2(T )] according to the formula in lemma 1. In each

case we set up the constant M so as to achieve a 40% terminal variance reduction

(i.e., the ratio of M over
R T
0 σ

2(t)dt equals 60%). We also compared our results

with the value of EI [g2(T )] obtained when we apply the constant value of a that

results in the same terminal variance. Figure 6 shows that in all cases we obtain

lower variances for our suboptimal speed of mean reversion, compared to a constant

speed of mean reversion, but the effect is more pronounced for steeper declines in

the volatility curve.

In the rest of this section we consider the volatility function corresponding to

m = 0.06 in (5.3). From figure 6, we see (assuming again that (4.2) holds) that a

CM resimulation scheme with constant a would need 86% more scenarios than a

CM resimulation scheme with suboptimal a(t), for the same accuracy. The former

would then be completely ineffective.

We now compare the CM resimulation scheme with the traditional resimulation

scheme on a real example. Comparing to section 4, the roles of the initial and the

terminal measure are reversed, since here the initial measure is the measure where

we calculate market value. We would therefore change steps IV and VI to:
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IV. Calculate the estimator of market value "in the initial measure"

VI. Estimate the empirical distribution "in the final measure"

In this particular example, instead of comparing the empirical distributions,

we compare the estimator of the variance (in the physical measure) of an at the

money floorlet, that is, an instrument with cash flow:

h(Fi(T,ω)) = max(K − Fi(T,ω), 0)

for T = Ti = 1.5, and K = Fi(0, ω) = 0.05. Since we have only one cash flow,

the adequate pricing measure is the forward measure, where (5.5) holds exactly.

Our estimators are then, for a given batch of scenarios b:

VCM (b) =
1

Ω

ΩX
ω=1

g(ω)h2(Fi(T,ω))−
"
1

Ω

ΩX
ω=1

g(ω)h(Fi(T,ω))

#2
(5.6)

VTRAD(b) =
1

Ω

ΩX
ω0=1

h2(Fi(T, ω
0))−

"
1

Ω

ΩX
ω=1

h(Fi(T,ω
0))

#2
(5.7)

where again scenarios ω are sampled from the forward measure, and scenarios

ω0 are sampled from the physical measure, and Ω = 100. We compared these

estimators across b = 1..100 batches and obtained an empirical standard deviation

of:

stdev(VCM (b)) = 5.51 ∗ 10−6

stdev(VTRAD(b)) = 5.49 ∗ 10−6
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In this particular example, the CM resimulation scheme would therefore be

twice faster than the traditional resimulation scheme (assuming again, that most

of the computing time is spent evaluating the cash flow h).

6. Conclusion

We derive optimality conditions and calculate approximate solutions to the

problem of determining the optimal speed of mean reversion to be applied to a

Gaussian state variable. We show that we can increase the speed of resimulation

and sensitivity analysis in a Monte Carlo simulation. In this article, we take the case

of finance simulations, but our result can apply to many other simulation problems,

potentially even to the numerical solution via finite differences of parabolic partial

differential equations.
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8. Appendix: Data Model

The data model in figure 1 refers to the problem described in section 4, namely

simulation of real options. We model the problem as a practitioner would face

it, deliberately satisfying mathematical rigor. For simplicity, we do not describe

obvious variables, such at time t and scenario ω. The field Constraint_Id can take

two values:

• average variance

• terminal variance

In other terms, the final measure can be determined via either the average

variance problem or the terminal variance problem1. The field Constraint_Val

takes the numerical value A (in case Constraint_Id=average variance) or M (in

case Constraint_Id=terminal variance).

Fields in grey ("key fields") uniquely determine each record in these tables.
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10. Figures
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Figure 2. Variance of g as a function of the ratio of A over the

cumulated variance of x in the uncontrolled case (a = 0). The

volatility is σ(t) = 0.2.

Variance of g(T)  for T=3

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0.6 0.7 0.8 0.9 1

Relative average variance of x(T)

For optimal speed

For constant speed

Figure 3. Variance of g as a function of the ratio of A over the

cumulated variance of x in the uncontrolled case (a = 0). The

volatility is σ(t) = 0.2(1+ 0.2 cos( t
4
)).
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Figure 4. Variance of g as a function of the ratio of M over

the terminal variance of x in the uncontrolled case (a = 0). The

volatility is σ(t) = 0.2.
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Figure 5. Variance of g as a function of the ratio of M over

the terminal variance of x in the uncontrolled case (a = 0). The

volatility is σ(t) = 0.2(1+ 0.2 cos( t
4
)).
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Variance of g(T) for T=15 and different volatilities
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Figure 6. This figure represents the variance of g2(T ) correspond-

ing to a 40% terminal variance reduction (i.e., the ratio of termi-

nal variance of x (a(t) 6= 0) over terminal variance of x (a(t) = 0)

equals 60%). The horizontal axis corresponds to different volatility

functions σ = 0.35(1− 0.8 exp(−2t)−mt).


