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A B S T R A C T

Historical pathogen burdens are examined as possible triggers for genetic adaptation. Evidence of adaptation
emerges for the acid phosphatase locus 1 (ACP1), interleukin-6 (IL6), interleukin-10 (IL10 ), human leukocyte
antigen (HLA) polymorphisms, along with a measure of heterozygosity over 783 alleles. Results are robust to
controlling for the physical and historical environment humans faced, and to endogeneity of the historical
pathogen burden measure. The present study represents a proof-of-concept which may pave the way to the
analysis of future aggregate measures coming from whole-genome sequencing/genotyping data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over evolutionary time, exposure to diseases leads humans
to adapt genetically. The non-random distribution of pathogens
humans faced historically, resulted in a corresponding non-random
distribution of human immunity to disease through genetic adapta-
tion (Barnes et al., 2010; Diamond and Bellwood, 2003; Wolfe et al.,
2007), since resistance is likely to have evolved through increased
allelic variation of the major histocompatibility complex (MHC) in
populations in response to the pathogens concerned (Gluckman
et al., 2009; Karlsson et al., 2014; Vogel and Chakravartti, 1966;
Vogel and Motulsky, 1997) . Examples include the evolved immu-
nity to a range of temperate zone diseases amongst Europeans that
decimated local populations during colonization (Diamond, 1997;
Diamond and Bellwood, 2003; Dobyns, 1966; Wolfe et al., 2007).
Selection at genes such as G6PD, HBB and CD40LG, variation in which
confer protection against malaria, seems to have started within the
past 10,000 years (Siddle and Quintana-Murci, 2014) , coinciding
with the Neolithic period. Since genetic adaptation takes time, the
emergence of pathogen resistance is likely to be dynamic, with

� Fedderke acknowledges the research support of Economic Research Southern
Africa.

* Corresponding author.
E-mail address: jwf15@psu.edu (J.W. Fedderke).

morbidity and mortality rising before falling with the emergence of
immunity (Cohen, 1989).

In this paper, we explore genetic adaptation responses to diseases
that humans faced historically. It goes without saying that we are not
suggesting that genetic adaptation is the only evolutionary response
to disease pressure. A range of alternatives cover social organization,
culture, institutions and (medical) technology, amongst others. See
for instance Thornhill and Fincher (2014) and Hays (2009). These are
not the focus of the present discussion. The novel feature of the paper
is that it employs a large compilation of global phenotypes, tests for
the historical pathogen intensity to genetic adaptation link at the
country level of aggregation, subjecting the evidence to a range of
statistical robustness tests.

Three testing strategies are employed to test the robustness of
reported results.

(A) First, we report the strength of statistical association between
historical pathogen burdens and a set of genetic markers for
which the link is hypothesized on a priori grounds as ranging
from direct, to indirect, to not relevant as a disease response
at all.

(B) Second, we test for the robustness of the association between
historical pathogen burdens and genetic markers, while con-
trolling for a wide array of variables that measure global
and local geographical conditions, as well as conditions that
served as possible triggers for changes in human behavior
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such as the transition to agriculture, that may have indepen-
dently influenced genetic adaptation.

(C) Third, statistical adjustments for the possibility of possibility
that adaptation may itself alter recorded intensity of disease,
for instance due to improved immunity (i.e. the presence
of reverse causation rendering estimated associations biased
and inconsistent), also reinforced the statistical association
between historical disease measures and genetic adaptation.

In undertaking these tasks, we have assembled a novel data set,
that combines not only a range of genetic data based on a large
compilation of global phenotypes, with a set of variables covering
geographical conditions across all country level units of aggregation
(up to 238 geographical sites across the globe), as well as variables
that cover human development from the present to paleohistorical
time periods.

2. Methods

2.1. Data — historical pathogen burden

Our measure of the historical pathogen burden faced by humans
is derived from Murray and Schaller (2010). We employ the seven-
disease index (ms_7) which covers leishmanias, schistosomes, try-
panosomes, malaria, typhus, filariae, and dengue. The Murray and
Schaller (2010) source also records a 9 disease (adds leprosy and
tuberculosis) and 6 disease (drops malaria) index value. We choose
the 7 disease index since it has much greater geographic coverage
than the 9 disease index (224 geographic locations vs. 160), and
greater pathogen coverage than the 6 disease index. The alterna-
tive measures contain little by way of different information from the
7 disease index, with correlations between the 7 and 9, and 7 and 6
disease indexes of 0.98 and 0.98.

2.2. Data — genetic markers

We consider a number of distinct genes that have been linked
to disease adaptation. For some, the link between pathogens and
genetic adaptation is direct (ACP1, IL6, IL10, HLA), for some indi-
rect (FAAH, SLC6A4) or merely established by observed correlation
(Rhesus), and for some there should be no association by construc-
tion (genetic distance). A more detailed overview on the role of the
different genetic measures considered is provided in Supplementary
material.

We have assembled data on the frequencies of ACP1*A, ACP1*B,
and ACP1*C alleles (gene map locus on Chr. 2p25.3, OMIM*171500)
in the populations of 121 countries. The data is a compilation of
153,090 global genotypes. This is a new data set, and therefore this
paper represents the first time country-level ACP1 frequencies have
been incorporated into studies of historical pathogen burdens. In
addition to ACP1, we have assembled new data on national allele fre-
quencies of the Interleukin-6 (IL6, gene map locus on Chr. 7p15.3,
OMIM*147620) (IL-6) -174G > C (rs1800795) and the Interleukin-
10 ( IL10, gene map locus on Chr. 1q32.1, OMIM*124092) (IL10)
-1082G > A (rs1800796) polymorphisms. ACP1, IL6 rs1800795 and
IL10 rs1800796 genotypes were retrieved through an extensive liter-
ature search carried out on PubMed and Google free search engines.
A detailed explanation of the data retrieval and the definition of
country-level estimates for ACP1, IL6 rs1800795 and IL10 rs1800796
allele frequencies are provided in Supplementary material.

From Ashraf and Galor (2013) we employ a measure of genetic
heterozygosity in countries adjusted for ancestry (pdiv_aa). It mea-
sures the expected heterozygosity between two randomly selected
people in the country in question, after adjusting for ancestry. It is
based on two sources. The first comes from data about heterozygos-
ity in 53 ethnic groups in the HGDP-CEPH Human Genome Diversity

Cell Line Panel in a sample of 21 countries. Second, Ashraf and
Galor (2013) build on work by Ramachandran et al. (2005), which
shows that this heterozygosity is highly correlated with the migra-
tory distance of these 53 groups from East Africa (r = 0.92). This
robust association between genetic diversity and migratory distance
before the Common Era is used to obtain predicted values of genetic
diversity for an extended sample of 145 countries.

A further measure of genetic diversity is provided by Cook
(2015), in the form of the human leukocyte antigen (HLA) system, a
highly polymorphic genetic cluster located on the sixth chromosome,
responsible for the location of foreign proteins in order to direct an
immune response to identified pathogens.

The prevalence of the rs324420 A allele in the FAAH gene (gene
map locus on Chr. 1p33, OMIM*602935) (Minkov and Bond, 2016),
and the 5-HTTLPR Short allele (SLC6A4*S) in the serotonin-transporter
gene (SLC6A4, gene map locus on Chr. 17q11.2, OMIM*182138) are
obtained from Chiao and Blizinsky (2010) and Minkov et al. (2014).
The rs324420 Aallele is involved in the hydrolysis of anandamide,
a substance that enhances sensory pleasure and helps reduce pain
(Minkov and Bond, 2016), and may thus represent an adaptation to
the impact of disease. The 5-HTTLPR S allele shows significant geo-
graphic variation, with higher East Asian than European frequencies,
and since carries of the S allele produce significantly less 5-HTT mRNA
and protein, generating higher concentrations of serotonin in the
synaptic cleft relative to carriers of the Long allele, which in turn
is associated with increased negative emotion, heightened anxiety,
harm avoidance, fear conditioning, attention bias toward negative
information, and depression in the face of environmental risk factors
(Chiao and Blizinsky, 2010). The implication is that the frequency
of the SLC6A4*S may map into social and personality traits, includ-
ing individualism vs. collectivism, IQ, risk acceptance, and long- or
short-term orientation (Chiao and Blizinsky, 2010; Minkov et al.,
2014).

The Rhesus factor (RHD, gene map locus on 1p36.11,
OMIM*111680) polymorphism measures derive from Flegr (2016),
for both the frequency of Rhesus negative homozygotes (rhdneg)
and Rhesus positive heterozygotes (rhdhetero). Flegr (2016) reports
that the burden associated with many diseases correlated with the
frequencies of particular Rhesus genotypes in a country and that
the direction of the relation was nearly always the opposite for the
frequency of Rhesus negative homozygotes ( rhdneg) and that of
Rhesus positive heterozygotes (rhdhetero).

Indexes on genetic distance between human populations come
from Spolaore and Wacziarg (2016), for the plurality population
group in a country (gdist_plu), and a weighted genetic distance in
which each population group is represented by population weight
(gdist_w). Spolaore and Wacziarg (2016) follow Cavalli-Sforza et al.
(1994) in using measures of FST distance, based on indices of het-
erozygosity, the probability that two alleles at a given locus selected
at random from two populations will be different. FST takes a value
equal to zero if and only if the allele distributions are identical across
the two populations, whereas it is positive when the allele distri-
butions differ. A higher FST is associated with larger differences. The
computation of genetic distances concentrates on neutral character-
istics that are not affected by strong directional selection, but only by
random drift.

2.3. Data — geography

Data on mean elevation, its variability, as well as the climatic
zones of countries on the Köppen-Geiger classification system is
derived from Center for International Earth Science Information
Network (CIESIN), Columbia University (2007). For climatic condi-
tions, we include a set of 5 climatic controls, which represent aggre-
gations of the 45 climate type classification under Köppen-Geiger:
the percentage of territory that is tropical (P_Tropical), mondane
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(P_Mondane), temperate (P_Temperate), continental (P_Continental)
or dry (P_Dry ). We also controlled for the diversity of climatic con-
ditions in each country, by means of a climate Gini coefficient (our
computation). The coefficient is distributed over the 0–1 interval,
with a value of 0 occurring where all climatic zones constitute an
equal proportion of the land area, while →1 reflects ever greater lack
of proportionality of the climatic zones in a countries’ land area.

Data on absolute longitude and latitude, mean precipitation, its
variability, terrain roughness, soil quality, mean temperature and its
variability, distance from water sources (oceans, lakes, rivers), and
the nature of the vegetation are derived from Nordhaus and Chen
(2016) and Nordhaus (2006). Note that this data is scaled from coun-
try one degree grid cells, weighted relative to country total area.
Data on global temperatures for the past 11,300 years, obtained from
paleotemperature readings from 73 globally distributed sites, with
sampling distributions ranging from 20 to 500 years, and median res-
olution of 120 years, is derived from Marcott et al. (2013). We employ
both first and second moment measures. Population size and density
from 10,000 BCE to 2000 CE is obtained from Klein Goldewijk et al.
(2010).

Data on the number of domesticable animal and plant species and
the continental landmass size and orientation from Olsson and Hibbs
(2005) and Hibbs and Olsson (2004). Coverage was extended for
domesticable continental species to all countries in the data base one
the basis of the Olsson and Hibbs (2005) and Hibbs and Olsson (2004)
classification, while continental landmass and axis orientation was
extended to island locations on the basis of Center for International
Earth Science Information Network (CIESIN), Columbia University
(2007) data. Finally, as a measure of timing associated with human
settlement to that measuring the timing of the Neolithic transition,
we also consider a measure of the duration of human settlement
(Ahlerup and Olsson, 2012) .

The entire dataset including all the variables used for the analysis
is reported as Supplementary data.

3. Expected results

We anticipate robust evidence of adaptation in the ACP1, IL6,
IL10, and HLA genes. The measure of heterozygotic genetic diver-
sity (pdiv_aa) may also show statistical association with historical
pathogen burdens. Given the indirect link between the FAAH, and
SLC6A4 genes and pathogen burdens, and the correlative evidence in
favor of an association between pathogen burdens and the RHD gene,
in these instances we anticipate weaker, or less robust statistical
association with measures of historical pathogen burdens.

By way of a counterfactual test, since the measures of genetic
distance (gdist) by construction are independent of adaptation to
pathogen burdens, these variables should not report statistical asso-
ciation with historical disease burdens.

Reported associations should be robust to controlling for the
influence of geography, and paleohistorical features of the environ-
ment humans faced, and to allowing for the possibility that recorded
pathogen intensity is itself determined by genetic adaptation (endo-
geneity).

4. Estimation methodology

Our empirical results below confirm the presence of strong corre-
lations between measures of historical disease environments and the
distributions of certain genes. However, correlations cannot confirm
that the association is not simply a reflection of other environ-
mental factors which may have triggered genetic adaptation that
happen to be correlated with historical pathogen burdens. Nor do
simple correlations allow for correction for the impact of possi-
ble of reverse causation, that genetic adaptation can itself come to

impact recorded pathogen burdens. To allow for these concerns, our
empirical methodology controls for an array of other variables that
potentially affect genetic adaptation, and corrects for the possibility
of reverse causation by means of instrumental variables estimation.

To explore the association between our genetic markers and his-
torical pathogen burdens, our baseline ordinary least squares (OLS)
estimation specification is given by:

Gi = b0 + bMSPi + ei (1)

where Gi denotes out set of genetic markers (ACP1*A, ACP1*B, IL6,
IL10, HLA, pdiv_aa, FAAH, SLC6A4, RHD, gdist_plu, gdist_w), Pi our
measure of historical pathogen burdens, and ei a Gaussian error for
country i.

To allow for the influence of geography, and paleohistorical fea-
tures of the environment humans faced, and for endogeneity of the
pathogen burden measure given the possibility that cov(Pi, ei) �= 0
thus rendering OLS estimation under specification Eq. (1) biased and
inconsistent, estimation is by instrumental variables (IV):

Gi = b0 + bMSP̂i +
∑

j

bjXi,j + gi (2)

Pi = p0 +
∑

k

pkZi,k +
∑

j

pjXi,j + mi (3)

where notation is defined as above, Xi,j denotes a set of j exogenous
geographical and paleohistorical controls, Zi,k a set of k exogenous
instruments, and gi, mi, two Gaussian error terms for country i. P̂i

denotes the conditional mean values obtained from the reduced form
first stage regression Eq. (3). Standard errors reported for the second
stage regression Eq. (2) are corrected for impact of the reduced form
estimation.

Legitimate IV estimation requires instrument strength (rP,Z → 1)
and validity (rZ,e → 0 ). Under instrument validity, since rZ,e → 0, the
conditional mean values, P̂i, obtained from the reduced form Eq. (3),
come to satisfy the cov(Pi, ei) = 0 condition for consistency of the
least squares estimator. Provided only that instrument strength is
satisfied, since rP,Z → 1, the conditional mean values, P̂i, employed
in the second stage regression Eq. (2), have not lost the information
contained in the historical pathogen burden measure, Pi.

Instrument strength is readily confirmed from the reduced form
estimation, or direct consideration of the strength of association
between the endogenous regressor, Pi, and the set of instruments,
Zi. Instrument validity requires instruments to be orthogonal to the
second stage population error structure, satisfying the exclusion
restriction that the instruments do not have a direct impact on the
second stage regression dependent variable. We present evidence in
support of both requirements of legitimate IV estimation.

5. Results: genetic adaptation to historical pathogen burdens

The patterns of association specified in Section 3 are plausible
on first examination of the data. For the ACP1, IL6 and IL10 genes,
strong bivariate associations with historical pathogen burdens are
borne out — see Fig. 1 and the associated Pearson product-moment
correlations recorded in the Figure caption. For the genetic het-
erogeneity measures (HLA, pdiv_aa), the association with historical
pathogen burdens is both considerably weaker, and subject to the
impact of strong outliers — see Fig. 2 and associated Pearson cor-
relations. For the FAAH , SLC6A4*S, and Rhesus factor polymorphism
genes associations are very weak — Figs. 2 and 3 and associated Pear-
son correlations. For the genetic distance variables, association with
historical pathogen burdens is entirely absent — Fig. 3 and associated
Pearson correlations.
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Fig. 1. Historic pathogen burdens with the ACP1, IL6, IL10 genes. Correlation of 7-disease index with ACP1*A (r = −0.61), ACP1*B (r = 0.64), IL6 (r = 0.73), and IL10 (−0.50).

Note that this evidence conforms to the anticipated strength of
association noted in Section 3.

The same inference follows from the OLS regression results
reported in Table 1, reporting results from the estimation of Eq. (1)
of Section 4.

Results confirm that ACP1*A and IL10 -1082*G are statistically sig-
nificantly negatively associated with historical pathogen burdens,
while for ACP1*B and IL6-174*G the association is statistically sig-
nificant and positive – columns 1–4 of Table 1. What is more,
historical pathogen burdens account for 40–50 % of the variation in
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Fig. 2. Historic pathogen burdens with the genetic diversity measures, and the RHDNEG, RHDNHETERO genes. Correlation of 7-disease index with HLA (r = −0.16), pdiv_aa
(r = 0.10), RHDNEG (r = −0.16), and RHDHETERO (−0.11).

the frequency of the country-level genetic markers (variation at the
country level of aggregation will return higher levels of goodness-
of-fit than at the individual level of aggregation). By contrast, the
FAAH, SLC6A4 5-HTTLPR*S, rhdneg, rhdhetero genes (columns 9 & 10, 7
& 8), and the genetic distance measures ( gdist_w, gdist_plu,columns
11 & 12) all prove to be statistically insignificantly associated with
the historical pathogen burden measures, and they fail to account for

any variation in the genetic variables (R2 ≈ 0). The HLA heterogene-
ity measure (column 5) does prove to be statistically significantly
and negatively associated with the historical pathogen burden, but
much more weakly than for the ACP1, IL6 and IL10 genes, with only
2% of the genetic variation accounted for by the historical pathogen
burden — surprisingly since the HLA polymorphism is explicitly pre-
sented as a disease adaptation mechanism. Moreover, we find the
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Fig. 3. Historic pathogen burdens with the FAAH, SLC6A4*S, genes, and the genetic distance measures. Correlation of 7-disease index with FAAH (r = 0.05), SLC6A4*S (r = −0.08),
GDIST_W (r = −0.05), and GDIST_PLU (r = 0.05).

HLA polymorphism declining rather than increasing in the intensity of
historical pathogen burdens, contradicting the prior expectation that
the polymorphism should increase in response to pathogen exposure
as an immunity-response. The pdiv_aa measure of genetic hetero-
geneity (column 6) is insignificantly though positively associated

with the 7-disease index of historical pathogen burdens, with only
3% of the variation in heterogeneity is accounted for by the disease
burden measure.

The evidence is thus consistent with the expectations specified
in Section 3. The projection of a strong association with historical
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Table 1
Genetic adaptation to historical pathogen burden.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ACP1*A ACP1*B IL6 IL10 HLA pdiv_aa rhdneg rhdhetero FAAH SLC6A4*S gdist_w gdist_plu

ms_7 −0.0789∗∗∗ 0.102 ∗∗∗ 0.190∗∗∗ −0.108∗∗∗ −0.00656* 0.00461 −0.0155 −0.0209 0.716 −1.642 −0.000989 0.0128
(−8.40) (9.09) (9.26) (−4.69) (−2.02) (1.34) (−1.21) (−0.82) (0.42) (−0.60) (−0.60) (0.66)

Constant 0.253∗∗∗ 0.722∗∗∗ 0.760∗∗∗ 0.360∗∗∗ 0.316∗∗∗ 0.726∗∗∗ 0.0986∗∗∗ 0.379∗∗∗ 21.28∗∗∗ 44.55∗∗∗ 0.0304∗∗∗ 0.0411∗∗

(41.75) (100.18) (57.55) (23.24) (159.13) (330.82) (12.05) (23.38) (18.75) (23.23) (29.15) (3.33)
Observations 120 120 77 67 167 164 61 61 65 59 162 162
Adjusted R2 0.369 0.407 0.527 0.241 0.018 0.005 0.008 −0.005 −0.013 −0.011 −0.004 −0.004

t statistics are in parentheses.
∗ p < 0.05.

∗∗ p < 0.01.
∗∗∗ p < 0.001.

pathogen burdens is confirmed for the ACP1, IL6, and IL10 genes,
with historical pathogen burdens proving statistically significant for
each gene, and accounting for roughly half the variation in the four
genetic variables. Associations of historical pathogen burdens with
the FAAH, SLC6A4*S, rhdneg, rhdhetero genes are weak, with histori-
cal pathogen burdens proving statistically significant, and accounting
for none of the variation in the genetic measure. Evidence also con-
firms historical pathogen burdens’ statistically insignificance for all
the genetic distance measures, nor does it account for any variation
in the genetic distance variables.

The only countervailing evidence emerges for the genetic hetero-
geneity variables. For the HLA measure, historical pathogen burdens
are statistically significant, but predict a decline in diversity with ris-
ing pathogen burdens, rather than an increase as hypothesized. What
is more, only 2% of the variation in HLA is accounted for by historical
disease burdens. For the heterozygotic diversity measures, histori-
cal pathogen burdens are statistically insignificant for the ancestry
adjusted (pdiv_aa) measure, and again the proportion of diversity
accounted for remains small (3%).

Nonetheless results are reassuring: strong statistical association
with historical pathogen burdens emerges for genes where a mech-
anism of adaptation has been suggested; where such mechanism are
not identified, the association is weak or altogether absent.

5.1. Robustness controlling for geographical and paleohistorical
determinants of genetic adaptation and allowing for endogeneity of
historical pathogen burdens

Are our results robust to controlling for additional geographical
and paleohistorical environmental factors, and when we allow for
the possibility that genetic adaptation may itself come to influence
recorded intensity of pathogen burdens, generating reverse causality
from the genetic measures to the historical pathogen burden mea-
sure? Both concerns carry the same statistical consequence: bias
and inconsistency of parameter estimates, such that any inference is
tainted.

We address these statistical concerns by the estimation of the
system (Eqs. (2), (3)) specified in Section 4.

The first concern is addressed by controlling for an array of geo-
graphical and historical variables at the country level of aggregation
(the

∑
jbjXi,j component of specification Eq. (2)). In particular, we

control for absolute latitude (ABSLAT), ultraviolet radiation intensity
(uvr), the number of domesticable species that humans encoun-
tered in different locations (Diamond), mean elevation (MEANELEV),
roughness of terrain (ROUGH), mean precipitation (AVPREC), mean
(AVTEMP) and standard deviation (SDTEMP) of temperature, dis-
tance to navigable water ( DWater), mean (mt8_10kBC) and standard
deviation (sd8_10kBC) of temperature in the early Holocene, and
population size ( p10kBC) and density (pd10kBC) in 10,000 BCE, and
then a set of measures of the proportion of the land area of countries

that fall into the five principal Köppen-Geiger classifications, tropi-
cal, montane, temperate, continental and dry (P_Tropical, P_Montane,
P_Temperate, P_Continental, P_Dry).

To address the second concern, we estimate by means of instru-
mental variables (IV). Our instruments include the length of human
occupation (origtime), absolute longitude (ABSLONG) and latitude
(ABSLAT), the axis rotation (axis) and size (size) of the continental
landmass of a country, and a measure of the variability of climate
in a country on the Köppen-Geiger classification (Climate_Gini). For
legitimate IV estimation, we require instrument strength and validity.
Instrument strength is confirmed by the regression reported in
Table 2, which confirms not only the statistical significance of the
instruments with respect to the historical pathogen burden measure,
but that they account for approximately 73% of the variation in his-
torical pathogen burdens. Instrument validity requires instruments
to be orthogonal to the second stage population error structure,
and to satisfy the exclusion restriction that the instruments do not
have a direct impact on the second stage regression dependent vari-
able. While our instruments might impact genetic adaptation, as
argued by Diamond (1997) this would have been through expo-
sure to pathogen burdens. Moreover, in each instance we allow for
additional geographical and environmental variables that are highly
correlated with the instruments in the second stage regression, to
capture any direct effect on genetic adaptation. Thus, in the case
of the axis rotation and landmass size of continents, we allow the

Table 2
Regression of historical pathogen burden measure on instru-
mental variables.

(1)

ms7

origtime 0.00000961∗∗

(3.12)
origtime_sqr −5.60e-11∗∗

(−2.73)
ABSLONG −0.00211*

(−2.30)
ABSLAT −0.0258∗∗∗

(−11.31)
axis −0.278∗∗∗

(−3.59)
size 0.00765*

(2.30)
Climate_Gini −1.159*

(−2.37)
Constant 1.336∗∗∗

(5.71)
Observations 168
Adjusted R2 0.728

t statistics are in parentheses.
∗ p < 0.05.

∗∗ p < 0.01.
∗∗∗ p < 0.001.
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for the number of domesticable species to impact genetic adapta-
tion directly. In the case of the climate measures, we control for
the proportion of territory under the alterative Köppen-Geiger clas-
sifications. Finally, note that Angrist et al. (1996) demonstrate that
the exclusion restriction comes to be satisfied where the goodness
of fit between instruments and endogenous regressor is high. Since
the association between the historical pathogen burden measure and
the instruments reported in Table 2 confirms an adj-R2 of 0.73, this
requirement is met.

Second stage estimation results are reported in Table 3. We
restrict the analysis to those genetic markers for which there is evi-
dence of a response to historical pathogen burdens, and for which
we have sufficient observations to render the expansion of indepen-
dent variables and the use of the instrumental variables technique
credible — unfortunately this eliminates the IL6 and IL10 adap-
tations. We make one exception by also including the ancestry
adjusted measure of genetic diversity (pdiv_aa) despite the insignif-
icant result of Table 1. We do so since the ancestry unadjusted form
of the variable is statistically significantly associated with historical

Table 3
Genetic adaptation to historical pathogen burden.

(1) (2) (3) (4)

ACP1*A ACP1*B HLA pdiv_aa

(IV) (IV) (IV) (IV)

ms_7 -0.0900∗∗∗ 0.0998∗∗∗ 0.0168* 0.0466∗∗∗

(−3.43) (3.45) (2.12) (5.36)
uvr 0.000259 0.00000857 −0.000268∗∗ −0.000387∗∗∗

(0.82) (0.02) (−2.81) (−4.19)
Diamond 0.0281∗∗∗ −0.0334∗∗∗ −0.000886 −0.00306

(4.06) (−4.39) (−0.38) (−1.26)
MEANELEV 2.94e-10 −3.83e-10 1.26e-11 −2.10e-10

(0.79) (−0.94) (0.09) (−1.49)
ROUGH −0.162∗∗ 0.174∗∗ 0.00947 0.0411*

(−2.86) (2.79) (0.81) (2.28)
AVPREC 0.00000969 −0.00000555 −0.0000151∗∗∗ −0.0000251∗∗∗

(0.69) (−0.36) (−3.66) (−5.13)
AVTEMP 0.00588* −0.00795* −0.000555 −0.00125*

(1.97) (−2.42) (−1.00) (−2.01)
SDTEMP −0.00481 0.00933* −0.000245 0.000154

(−1.14) (2.00) (−0.18) (0.11)
DWater 0.0000221 −0.0000294 −0.00000396 −0.00000467

(1.08) (−1.30) (−0.63) (−0.74)
mt8_10kBC 0.142∗∗ −0.154∗∗ −0.0123 −0.0454*

(3.20) (−3.15) (−0.72) (−2.51)
sd8_10kBC −1.712* 1.481 −0.0806 0.0803

(−2.34) (1.84) (−0.28) (0.26)
sd8_10kBC_sqr 4.394* −3.780 0.183 −0.176

(2.29) (−1.79) (0.24) (−0.22)
pd10kBC 0.0300 −0.0416 −0.00457 −0.0132

(1.16) (−1.45) (−0.46) (−1.28)
p10kBC 0.000153∗∗ −0.000176∗∗ −0.0000335 −0.000107∗∗∗

(2.71) (−2.84) (−1.47) (−4.50)
P_Tropical −0.000745 0.000700 −0.0000859 −0.00123

(−0.64) (0.55) (−0.81) (−0.66)
P_Montane 0.00102 −0.00140 −0.000234 −0.00173

(0.82) (−1.01) (−1.12) (−0.93)
P_Temperate −0.000455 0.000230 −0.0000901 −0.00135

(−0.39) (0.18) (−0.79) (−0.73)
P_Continental −0.000167 −0.000397 −0.000321* −0.00135

(−0.14) (−0.29) (−2.18) (−0.73)
P_Dry −0.00100 0.000927 −0.000176 −0.00123

(−0.85) (0.71) (−1.62) (−0.67)
Constant 0.281 0.690∗∗∗ 0.418∗∗∗ 0.968∗∗∗

(1.76) (3.93) (12.91) (5.05)
Observations 116 116 158 157
Adjusted R2 0.580 0.665 0.259 0.325

t statistics are in parentheses.
∗ p < 0.05.

∗∗ p < 0.01.
∗∗∗ p < 0.001.

pathogen burdens, suggesting the possibility of a link (not reported
in Table 1, given the focus on the ancestry adjusted format of the pdiv
variable).

In the presence of the array of geographical and historical vari-
ables, and under the IV-estimation, we find that the measure of
historical pathogen burdens maintains its statistical significance for
the four genetic measures. The ACP1*B, and pdiv_aa measures main-
tain their positive association with the instrumented measure of
the historical pathogen burden, and ACP1*A its negative association.
The ancestry adjusted heterogeneity measure now gains statistical
significance. For the HLA polymorphism, under the instrumentation
strategy we now find the theoretically mandated positive and statis-
tically significant response to rising historical pathogen burdens.

Note that the statistically significant genetic response to histori-
cal pathogen burdens is maintained even in the presence of the wide
range of geographical controls. Of the geographical controls, particu-
larly the measure of the number of domesticable species (Diamond),
terrain roughness, mean temperature, and temperature variation in
the early Holocene, as well as population size in 10,000BC show signs
of an independent impact on the genetic markers.

The evidence is thus consistent with the existence of genetic
adaptation to historical disease burdens, robust to controlling for the
impact of influence of geography, and paleohistorical features of the
environment humans faced, consistent with the requirement that
the association between pathogens and genetic adaptation is not sta-
tistically spurious. What is more, the association between historical
pathogen burdens and genetic adaptation proves robust to allowing
for the endogeneity of the pathogen burden measure.

6. Conclusions and evaluation

We explored evidence in support of human adaptation mecha-
nisms in the face of historical pathogen burdens. The novel feature of
the paper is that it employs a large compilation of global phenotypes
to date, tests for the historical pathogen intensity to genetic adapta-
tion link at the country level of aggregation, subjecting the evidence
to a range of statistical robustness tests. Specifically, it examines the
pathogen burden to genetic adaptation association across cases in
which the strength of association should range from strong, to weak
at best, to absent, to allow for the counterfactual case.

In addition, our testing strategy allows for both omitted variables
bias and endogeneity of historical pathogen burdens.

We report evidence consistent with genetic adaptation to histor-
ical disease burdens. The evidence for genetic adaptation is not only
statistically significant, but robust to controlling for a wide range
of additional measures of the physical and historical environment
humans have faced, and for possible reverse causality from genetic
adaptation to historical pathogen burdens.

Importantly, strong statistical association with historical
pathogen burdens emerges for genes where a mechanism of adapta-
tion has been suggested. Where such mechanisms are not identified,
the association is weak. For genetic markers constructed to ensure
independence of the genetic measure from disease adaptation, we
confirm the absence of any association. Thus evidence of adaptation
emerges for the acid phosphatase locus 1 (ACP1) soluble genetic
polymorphism, the interleukin-6 (IL6) G-allele and interleukin-10
(IL10) G-allele, the human leukocyte antigen (HLA), and the pdiv_aa
measure of genetic diversity. No evidence of a statistically signifi-
cant response to historical pathogen burdens emerges for measures
of genetic distance between human populations, in the rs324420 A
allele in the FAAH gene, nor in the 5-HTTLPR Short allele (SLC6A4*S)
in the serotonin-transporter gene.

Limitations attach to country level analyses arising a range of
data quality issues beyond the usual loss of information due to
aggregation. Theses arise from incomplete geographical coverage
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across the full set of countries, introducing the potential of selec-
tion effect biases, as well as questions surrounding their construction
in some instances (such as the inferential source of the pdiv_aa
data for many of the sample points). To minimize such problem,
we decided to focus on a few, widely-studied genetic variants
with established functional effects, to guarantee a sufficient cov-
erage at global level by determining their respective country-level
estimates, instead of using a genome-wide approach. The present
study represents a proof-of-concept which may pave the way to the
analysis of future aggregate measures coming from whole-genome
sequencing/genotyping data. Big efforts are being made in genotyp-
ing several populations across the world [e.g. POPRES Nelson et al.,
2008, ALFRED Rajeevan et al. (2012), Haplotype Refence Consortium
McCarthy et al., 2016, Simons Genome Diversity Project Mallick et al.,
2016]. We are confident that soon we will be able to analyze the
country-level aggregates of allele frequencies for the whole genome.
However, this effort will require a very careful harmonization of
genetic data, through imputation and population structure analyses,
allowing a proper handling of genetic data at country-level.

On the other hand, our evidence suggests that useful insight
under the application of appropriate statistical techniques is
nonetheless feasible.

In the specified set of genetic dimensions there does therefore
appear to be support for adaptation to historical pathogen burdens,
which is robust to controlling for the physical and historical environ-
ment humans faced, and to endogeneity of the historical pathogen
burden measure.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.meegid.2017.07.017.
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